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Abstract—In this paper, we propose a novel improvement for the 

generalized Lloyd Algorithm (GLA). Our algorithm makes use of an 

M-tree index built on the codebook which makes it possible to reduce 

the number of distance computations when the nearest code words 

are searched. Our method does not impose the use of any specific 

distance function, but works with any metric distance, making it 

more general than many other fast GLA variants. Finally, we present 

the positive results of our performance experiments. 

Keywords—Clustering, GLA, M-Tree, Vector 

Quantization .

I. INTRODUCTION

lustering - a process of classifying objects into groups 

according to their similarity [1] - has been extensively 

studied and put to use in many different application areas, 

such as data mining [2] and pattern recognition [3]. The 

importance of clustering has also passed over to the area of 

data compression where clustering is used as a means for 

codebook generation in vector quantization [4]. In this setting, 

clustering is used to find a given number of code vectors, in 

other words, a codebook, for a given set of training vectors by 

minimizing the average pairwise distance between the training 

vectors and their representative code vectors. 

 In this paper, we concentrate on the widely known 

generalized Lloyd algorithm (GLA). The algorithm starts with 

an initial, e.g., random, codebook which is iteratively 

improved until some convergence condition is met. Each 

iteration of GLA consists of two steps, the partition step in 

which each training vector is assigned to its closest code 

vector, and the codebook step in which the code vectors are 

updated based on the partitioning found in the partition step. If 

GLA is straightforwardly implemented, every partition step 

requires mn  distance computations, where n  denotes the 

size of the codebook and m  the number of training vectors.  

 Our idea is to reduce the number of distance calculations by 

building an M-tree [5] over the codebook and using this tree 

to find the nearest code vector. Since the nearest code vector 

for any given training vector can now be found with a 
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logarithmic number of distance computations, only 

mnO log  distance computations are needed in the 

partition step. Obviously, this method yields better results as 

the size of the codebook increases, and thus our method is at 

its best in clustering tasks involving relatively high number of 

clusters. 

 Our method also has the additional advantage of being 

more general than many other GLA variants. Many other 

methods which force the use of Euclidean or otherwise 

restricted distance function, but here, the distance function is 

only assumed to be metric, i.e., to satisfy the non-negativity, 

symmetry, and triangle inequality postulates.  

 The remainder of this paper is organized as follows. In 

section II, we briefly review the related work, and in section 

III, we present some basic concepts related to M-trees. Our 

clustering method is presented in section IV and the results of 

our performance evaluation in section V. Section VI 

concludes this article and discusses our future work. 

II. RELATED WORK

Index structures have previously been used to speed up GLA 

by building an index on training vectors and using simple 

geometric reasoning to reduce the number of distance 

calculations [6, 7, 8]. The use of an kd-tree or other spatial 

access methods, however, imposes the distance metric to be an 

pL  norm ruling out the use of more sophisticated distance 

functions, such as Levenshtein distance or Mahalanobis 

distance. Furthermore, as observed in [8], the performance of 

these methods is seriously degraded as the dimensionality of 

the data increases. 

The partial distortion search (PDS) [9] aims at reducing the 

number of distance calculations by computing the distance 

between a code vector candidate and a training vector 

cumulatively by summing up the squared differences in each 

dimension. If the cumulative distance exceeds the distance 

between the training vector and the closest code vector found 

thus far, the code vector candidate is rejected. The mean-

distance-ordered partial search (MPS) [10] utilizes a less 

expensive distance function to find a lower bound for the 

distance between a code vector candidate and a training 

vector. If this value is greater than the current minimum 

distance the candidate is rejected. Since most of the 

information needed to calculate the lower bound can be 

precalculated, this method can reduce the runnig time 

substantially. However, MPS can only be applied if Euclidean 

distance metric is used. 

The triangular inequality elimination technique (TIE) [11], 

on the contrary, does not force the use of any specific distance 
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function, and thus we regard TIE as the most relevant GLA 

variant to our paper. In TIE, it is assumed that the distance 

function is metric, and hence the distance calculation between 

a code vector iC  and a training vector jT  can be avoided if 

ajai CTdCCd ,4,                                                       (1) 

where yx OOd ,  denotes the distance between xO  and yO

and aC  denotes the nearest code vector found thus far. A 

practical implementation of TIE utilizes a matrix of the 

distances between all code vectors which is updated at the 

beginning of each partition step. Since updating the matrix 

requires 2)1(nn  distance calculations, where n  denotes 

the size of the codebook, the performance of TIE significantly 

degrades when the number of clusters increases. 

The code vector activity detection proposed by Kaukoranta 

et al. [12] is based on the concepts of active and static code 

vectors. If a training vector is assigned to a static code vector, 

i.e., a code vector which was not changed in the last codebook 

step, only the distances to active code vectors, i.e., code 

vectors which were changed in the last codebook step, have to 

be computed. This method can be applied to a wide range of 

GLA variants, including the method proposed in this paper.  

III. METRIC SPACES AND M-TREES

A metric space is defined as a pair dDM , , where D  is a 

domain of feature values and RDDd :  is a distance 

function such that for all DOOO zyx ,, :

yxyx OOOOd 0,                                                   (2) 

xyyx OOdOOd ,,                                                         (3) 

yzzxyx OOdOOdOOd ,,,                                     (4) 

 Metric spaces can be indexed using so called metric trees 

[13] which only consider the relative distances between 

objects. One metric tree structure is the M-tree proposed by 

Ciaccia et al. [5]. In an M-tree, all indexed objects reside on 

the leaf level. Each inner node stores a routing object and its 

covering radius, i.e., the maximum distance between the 

routing object and the objects residing in the subtrees 

corresponding to the routing object.  

For accessing the indexed objects, M-tree provides two 

search methods. In the range query, the query object and the 

maximum distance are specified, and in the k nearest 

neighbors query, the query object and the cardinality of the 

result set are the input parameters. Both types of queries start 

from the root and recursively traverse all the paths which 

cannot be excluded from the search. For our purposes, it is 

sufficient to say that in most cases, the number distance 

computations involved in both types of queries grows 

logarithmically with respect to the size of the tree. This, of 

course, is typical to tree structures, since the heigth of the tree 

also grows logarithmically with respect to tree size. For a 

detailed description of the M-tree, we refer the reader to [5]. 

IV. OUR ALGORITHM

The main intuition behind our algorithm is very simple. By 

building an M-tree over the codebook at the start of each 

partition step, we can expect to find the nearest code vector 

for each of the training vectors with a logarithmic number of 

distance computations. Of course, the building of the M-tree 

introduces some overhead which in typical clustering tasks, 

however, is negligible since the number of clusters compared 

to the number of training vectors is typically relatively small. 

This is evident in the results of our experimental evaluation 

presented in section VI. 

Our algorithm is presented in Fig. 1. Operation clear 

empties the M-tree and operation kNN(O,k) returns k nearest 

neighbors of O. Each partition step is preceded by building of 

a new M-tree over the codebook which takes  approximately 

nn log  distance computations. We then use the M-tree to 

find the nearest code vector for each of the training vectors by 

issuing a nearest neigbor query. This can be done using 

mnO log  distance computations. After this, the codebook 

is updated and the improvement of the partition checked. 

M-TREE-GLA(T )

IN: Training set T .

Generate codebook C  by any algorithm; 

REPEAT 

  tree.clear; 

  FOR EACH CCi  DO 

   tree.insert( iC );

  FOR EACH TTi  DO 

   iT .cluster = tree.kNN( iT ,1); 

  FOR EACH CCi  DO 

   iC .update; 

UNTIL no improvement achieved 

Figure 1. Pseudo-code of our algorithm. 

V. EXPERIMENTAL RESULTS

We evaluated the performance of our method by performing 

codebook generation tasks on three standard CCIT test images 

presented in Fig. 2 - Fig. 4, with varying number of clusters. 

The size of all images was 256x256 pixels and the training 

vectors were 4x4 pixel blocks from the images. Thus, the 

number of training vectors in all cases is 4096. We also 

implemented the simple GLA and TIE as proposed in [11]. All 

algorithms were implemented using Java. 

Fig. 3 illustrates the average number of distance 

computations per training vector per iteration for these three 

images using six different codebook sizes. The 21nn

distance computations needed to update the distance matrix in 

TIE and the )log(nn  distance computations needed to build 

the tree  in our M-tree variant are included in the results.  

Fig. 5 clearly shows that the performance of TIE degrades 

significantly as the number of clusters inceases. In the case of 

1024 clusters, for example, updating the distance matrix 

requires 524288 distance computations at the beginning of  
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each partition step, whereas building the M-tree requires 

approximately 10000 distance computations. 

Fig. 6 illustrates the average running time per training 

vector per iteration. These results include not only the time 

needed for the distance computations, but also the time needed 

to sort the rows of the distance matrix in TIE, and thus TIE 

performs even worse. Overall, our M-tree variant clearly 

outperforms both TIE and simple GLA in clustering tasks 

involving a large number of clusters. 

Figure 2. Bridge (256x256). 

Figure 3. Camera (256x256). 

Figure 4. Couple (256x256). 

VI. CONCLUSION AND FUTURE WORK

We introduced an improvement to GLA which utilizes an M-

tree built on the codebook. Unlike many other methods, our 

variant does not force the use of any specific distance 

function, which makes it more general than many other 

methods. We also presented the results of our performance 

evaluation which suggested that the M-tree variant can 

outperform the TIE method proposed by Chen and Tsieh [11]. 

Figure 5. The average number of distance calculations per 

training vector per iteration. The results are averages for 

Bridge, Camera, and Couple, 10 runs for each image.  

Figure 6. The average running time (in milliseconds) per 

training vector per iteration. The results are averages for 

Bridge, Camera, and Couple, 10 runs for each image. 

 Our method provides good performance especially when 

the number of clusters is relatively high, and thus it suits well 

to codebook generation in vector quantization, for example. 

However, our algorithm  still  has to visit every training 

vector.  We plan to tackle this problem by building an index 

also on the training vectors, which makes it possible to assign 

a large number of training vector to a cluster at the same time 

[6, 7, 8]. We are also going to efficiently incorporate the code 

vector activity detection [12] in our method, since the most 
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obvious solution, building separate M-trees for active code 

vectors and for all code vectors, introduces some unnecessary 

overhead. 
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