
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

805

Abstract—In this paper, we propose a novel improvement for the

generalized Lloyd Algorithm (GLA). Our algorithm makes use of an

M-tree index built on the codebook which makes it possible to reduce

the number of distance computations when the nearest code words

are searched. Our method does not impose the use of any specific

distance function, but works with any metric distance, making it

more general than many other fast GLA variants. Finally, we present

the positive results of our performance experiments.

Keywords—Clustering, GLA, M-Tree, Vector

Quantization .

I. INTRODUCTION

lustering - a process of classifying objects into groups

according to their similarity [1] - has been extensively

studied and put to use in many different application areas,

such as data mining [2] and pattern recognition [3]. The

importance of clustering has also passed over to the area of

data compression where clustering is used as a means for

codebook generation in vector quantization [4]. In this setting,

clustering is used to find a given number of code vectors, in

other words, a codebook, for a given set of training vectors by

minimizing the average pairwise distance between the training

vectors and their representative code vectors.

 In this paper, we concentrate on the widely known

generalized Lloyd algorithm (GLA). The algorithm starts with

an initial, e.g., random, codebook which is iteratively

improved until some convergence condition is met. Each

iteration of GLA consists of two steps, the partition step in

which each training vector is assigned to its closest code

vector, and the codebook step in which the code vectors are

updated based on the partitioning found in the partition step. If

GLA is straightforwardly implemented, every partition step

requires mn distance computations, where n denotes the

size of the codebook and m the number of training vectors.

 Our idea is to reduce the number of distance calculations by

building an M-tree [5] over the codebook and using this tree

to find the nearest code vector. Since the nearest code vector

for any given training vector can now be found with a

Manuscript received January 20, 2005.

O. Luoma is with TUCS (Turku Center for Computer Science) and

Department of Information Technology, University of Turku,

Lemminkäisenkatu 14 A, FIN-20520 Turku, FINLAND (phone: +358-(0)2-

3338666; fax: +358-(0)2-3338600; e- mail: olli.luoma@it.utu.fi).

J. Tuikkala is with TUCS and Department of Information Technology,

University of Turku, FINLAND (e-mail: johannes.tuikkala@it.utu.fi).

O. Nevalainen is with TUCS and Department of Information Technology,

University of Turku, FINLAND (e-mail: olli.nevalainen@it.utu.fi).

logarithmic number of distance computations, only

mnO log distance computations are needed in the

partition step. Obviously, this method yields better results as

the size of the codebook increases, and thus our method is at

its best in clustering tasks involving relatively high number of

clusters.

 Our method also has the additional advantage of being

more general than many other GLA variants. Many other

methods which force the use of Euclidean or otherwise

restricted distance function, but here, the distance function is

only assumed to be metric, i.e., to satisfy the non-negativity,

symmetry, and triangle inequality postulates.

 The remainder of this paper is organized as follows. In

section II, we briefly review the related work, and in section

III, we present some basic concepts related to M-trees. Our

clustering method is presented in section IV and the results of

our performance evaluation in section V. Section VI

concludes this article and discusses our future work.

II. RELATED WORK

Index structures have previously been used to speed up GLA

by building an index on training vectors and using simple

geometric reasoning to reduce the number of distance

calculations [6, 7, 8]. The use of an kd-tree or other spatial

access methods, however, imposes the distance metric to be an

pL norm ruling out the use of more sophisticated distance

functions, such as Levenshtein distance or Mahalanobis

distance. Furthermore, as observed in [8], the performance of

these methods is seriously degraded as the dimensionality of

the data increases.

The partial distortion search (PDS) [9] aims at reducing the

number of distance calculations by computing the distance

between a code vector candidate and a training vector

cumulatively by summing up the squared differences in each

dimension. If the cumulative distance exceeds the distance

between the training vector and the closest code vector found

thus far, the code vector candidate is rejected. The mean-

distance-ordered partial search (MPS) [10] utilizes a less

expensive distance function to find a lower bound for the

distance between a code vector candidate and a training

vector. If this value is greater than the current minimum

distance the candidate is rejected. Since most of the

information needed to calculate the lower bound can be

precalculated, this method can reduce the runnig time

substantially. However, MPS can only be applied if Euclidean

distance metric is used.

The triangular inequality elimination technique (TIE) [11],

on the contrary, does not force the use of any specific distance

Accelerating GLA with an M-Tree

Olli Luoma, Johannes Tuikkala, and Olli Nevalainen

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

806

function, and thus we regard TIE as the most relevant GLA

variant to our paper. In TIE, it is assumed that the distance

function is metric, and hence the distance calculation between

a code vector iC and a training vector jT can be avoided if

ajai CTdCCd ,4, (1)

where yx OOd , denotes the distance between xO and yO

and aC denotes the nearest code vector found thus far. A

practical implementation of TIE utilizes a matrix of the

distances between all code vectors which is updated at the

beginning of each partition step. Since updating the matrix

requires 2)1(nn distance calculations, where n denotes

the size of the codebook, the performance of TIE significantly

degrades when the number of clusters increases.

The code vector activity detection proposed by Kaukoranta

et al. [12] is based on the concepts of active and static code

vectors. If a training vector is assigned to a static code vector,

i.e., a code vector which was not changed in the last codebook

step, only the distances to active code vectors, i.e., code

vectors which were changed in the last codebook step, have to

be computed. This method can be applied to a wide range of

GLA variants, including the method proposed in this paper.

III. METRIC SPACES AND M-TREES

A metric space is defined as a pair dDM , , where D is a

domain of feature values and RDDd : is a distance

function such that for all DOOO zyx ,, :

yxyx OOOOd 0, (2)

xyyx OOdOOd ,, (3)

yzzxyx OOdOOdOOd ,,, (4)

 Metric spaces can be indexed using so called metric trees

[13] which only consider the relative distances between

objects. One metric tree structure is the M-tree proposed by

Ciaccia et al. [5]. In an M-tree, all indexed objects reside on

the leaf level. Each inner node stores a routing object and its

covering radius, i.e., the maximum distance between the

routing object and the objects residing in the subtrees

corresponding to the routing object.

For accessing the indexed objects, M-tree provides two

search methods. In the range query, the query object and the

maximum distance are specified, and in the k nearest

neighbors query, the query object and the cardinality of the

result set are the input parameters. Both types of queries start

from the root and recursively traverse all the paths which

cannot be excluded from the search. For our purposes, it is

sufficient to say that in most cases, the number distance

computations involved in both types of queries grows

logarithmically with respect to the size of the tree. This, of

course, is typical to tree structures, since the heigth of the tree

also grows logarithmically with respect to tree size. For a

detailed description of the M-tree, we refer the reader to [5].

IV. OUR ALGORITHM

The main intuition behind our algorithm is very simple. By

building an M-tree over the codebook at the start of each

partition step, we can expect to find the nearest code vector

for each of the training vectors with a logarithmic number of

distance computations. Of course, the building of the M-tree

introduces some overhead which in typical clustering tasks,

however, is negligible since the number of clusters compared

to the number of training vectors is typically relatively small.

This is evident in the results of our experimental evaluation

presented in section VI.

Our algorithm is presented in Fig. 1. Operation clear

empties the M-tree and operation kNN(O,k) returns k nearest

neighbors of O. Each partition step is preceded by building of

a new M-tree over the codebook which takes approximately

nn log distance computations. We then use the M-tree to

find the nearest code vector for each of the training vectors by

issuing a nearest neigbor query. This can be done using

mnO log distance computations. After this, the codebook

is updated and the improvement of the partition checked.

M-TREE-GLA(T)

IN: Training set T .

Generate codebook C by any algorithm;

REPEAT

 tree.clear;

 FOR EACH CCi DO

 tree.insert(iC);

 FOR EACH TTi DO

 iT .cluster = tree.kNN(iT ,1);

 FOR EACH CCi DO

 iC .update;

UNTIL no improvement achieved

Figure 1. Pseudo-code of our algorithm.

V. EXPERIMENTAL RESULTS

We evaluated the performance of our method by performing

codebook generation tasks on three standard CCIT test images

presented in Fig. 2 - Fig. 4, with varying number of clusters.

The size of all images was 256x256 pixels and the training

vectors were 4x4 pixel blocks from the images. Thus, the

number of training vectors in all cases is 4096. We also

implemented the simple GLA and TIE as proposed in [11]. All

algorithms were implemented using Java.

Fig. 3 illustrates the average number of distance

computations per training vector per iteration for these three

images using six different codebook sizes. The 21nn

distance computations needed to update the distance matrix in

TIE and the)log(nn distance computations needed to build

the tree in our M-tree variant are included in the results.

Fig. 5 clearly shows that the performance of TIE degrades

significantly as the number of clusters inceases. In the case of

1024 clusters, for example, updating the distance matrix

requires 524288 distance computations at the beginning of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

807

each partition step, whereas building the M-tree requires

approximately 10000 distance computations.

Fig. 6 illustrates the average running time per training

vector per iteration. These results include not only the time

needed for the distance computations, but also the time needed

to sort the rows of the distance matrix in TIE, and thus TIE

performs even worse. Overall, our M-tree variant clearly

outperforms both TIE and simple GLA in clustering tasks

involving a large number of clusters.

Figure 2. Bridge (256x256).

Figure 3. Camera (256x256).

Figure 4. Couple (256x256).

VI. CONCLUSION AND FUTURE WORK

We introduced an improvement to GLA which utilizes an M-

tree built on the codebook. Unlike many other methods, our

variant does not force the use of any specific distance

function, which makes it more general than many other

methods. We also presented the results of our performance

evaluation which suggested that the M-tree variant can

outperform the TIE method proposed by Chen and Tsieh [11].

Figure 5. The average number of distance calculations per

training vector per iteration. The results are averages for

Bridge, Camera, and Couple, 10 runs for each image.

Figure 6. The average running time (in milliseconds) per

training vector per iteration. The results are averages for

Bridge, Camera, and Couple, 10 runs for each image.

 Our method provides good performance especially when

the number of clusters is relatively high, and thus it suits well

to codebook generation in vector quantization, for example.

However, our algorithm still has to visit every training

vector. We plan to tackle this problem by building an index

also on the training vectors, which makes it possible to assign

a large number of training vector to a cluster at the same time

[6, 7, 8]. We are also going to efficiently incorporate the code

vector activity detection [12] in our method, since the most

Average number of distance computations

0

200

400

600

800

1000

1200

32 64 128 256 512 1024

TIE

Mtree

Simple

Average time

0

0,5

1

1,5

2

2,5

3

32 64 128 256 512 1024

TIE

Mtree

Simple

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

808

obvious solution, building separate M-trees for active code

vectors and for all code vectors, introduces some unnecessary

overhead.

REFERENCES

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice-

Hall, 1988.

[2] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and Uthurusamy,

Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press,

1996.

[3] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.

New York: John Wiley & Sons, 1973.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal

Compression. Boston: Kluwer Academic, 1992.

[5] P. Ciaccia, M. Patella, P. Zezula, “M -tree: An efficient access method

for similarity search in metric spaces,” in Proceedings of the 23rd

Conference on Very Large Databases, 1997, pp. 426-435.

[6] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman,

and A. Y. Wu, “Computing nearest neighbors for moving points and

applications to clustering,” in Proceedings of the 10th Annual ACM

SIAM Symposium on Discrete Algorithms, 1999, pp. S931-S932.

[7] K. Alsabti, S. Ranka, and V. Singh, , “An efficient k-means clustering

algorithm,” in Proceedings of the 1st Workshop on High Performance

Data Mining, 1998.

[8] D. Pelleg and A. Moore, “Accelerating exact k-means algorithms with

geometric reasoning,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

1999, pp. 277-281.

[9] C.-D. Bei and R. M. Gray, “An improvement of the minimum distortion

encoding algorithm for vector quantization,” IEEE Transactions on

Communications, vol. 33, no. 10, pp. 1132-1133, October 1985.

[10] S.-W. Ra and J.-K. Kim, “A fast mean-distance-ordered partial codebook

search algorithm for image vector quantization,” IEEE Transactions on

Circuits and Systems, vol. 40, no. 9, pp. 576-579, September 1993.

[11] S.-H. Chen and W. M. Hsieh, “Fast algorithm for VQ codebook design,”

IEE Proceedings-I, vol. 138, no. 5, pp. 357-362, October 1991.

[12] T. Kaukoranta, P. Fränti, and O. Nevalainen, “A fast exact GLA based

on code vector activity detection,” IEEE Transactions on Image

Processing, vol. 9, no. 8, pp. 1337-1342, August 2000.

[13] J. K. Uhlmann, “Satisfying general proximity/similarity queries with

metric trees,” Information Processing Letters, vol. 40, no. 4, pp. 175-

179, November 1991.

