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Abstract—1In this paper a non-parametric statistical pattern
recognition algorithm for the problem of credit scoring will be
presented. The proposed algorithm is based on a clustering k-
means algorithm and allows for the determination of subclasses
of homogenous elements in the data.

The algorithm will be tested on two benchmark datasets
and its performance compared with other well known pattern
recognition algorithm for credit scoring.
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I. INTRODUCTION

REDIT scoring has its setting in the wide context of
financial credit.

For many years the decision to grant credit has been
taken judgmentally by credit analysts, mainly on the basis
of their subjective evaluation of the risk of default. The
rapid growth in the last years, in both the availability and
the use of consumer credit, however, has led to a rise in the
use of more formal and objective methods, known as credit
scoring, to help credit providers quantify and manage the
financial risk involved in granting credit and to decide,
quickly and in a more objective way, whether or not to
provide credit.

The US sub-prime mortgage crisis has revealed the
impact of credit risk decisions on the global e local econ-
omy. Various financial institutions have suffered important
losses as a result of customer payment defaults. Therefore
the development of reliable, efficient and fast credit risk
decision support system has a key role in enhancing the
evaluation decision by getting faster and more accurate
decisions.

Credit scoring can be formally defined as a statistical
technique aimed at the prediction of the probability that
a loan applicant, or an existing borrower, will default or
become delinquent [1].

The credit scoring approach of managing the loan grant-
ing was first introduced in the 1940s but evolved and
developed significantly in the 1960s, when credit cards
were introduced and their use started increasing.
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Credit scoring realizes a sort of automation of the
credit granting process whose benefits concern both the
lenders and the borrowers. Advantages deriving from such
an automation coincide with enabling credit providers
to focus on only information related to credit risk, with
increasing speed and consistency of the loan application
process, thus enabling financial institutions to quantify the
risks associated with granting credits and to determine the
interest rate to be charged, etc

In recent years credit scoring has been used for loans
concerning homes and small business, as well as for insur-
ance applications and renewals.

The automation of the credit grant process is realized
through the construction of credit scoring models, which
are statistically derived models aimed at the orientation
of the process of decision making for loan applications.

The construction of credit scoring models generally
refers to a methodology involving: i) the selection of a
training set, which is a sample of customers whose solvency
is previously known and therefore are classifiable as “good”
and “bad”, according to their repayment performance over
a given period of time; ii) the definition of the data set
to be analyzed, generally defined on the basis of the loan
applications; iii) the performance of statistical (or other
quantitative) analysis of the data to derive a credit scoring
model.

Traditional statistical methods are the most common
among the several techniques used in the construction
of credit scoring models [19]. In particular, Fisher’s dis-
criminant analysis[11] was first intensively applied in the
construction of the earliest credit scoring models. Logistic
regression [15] was then proposed as an alternative, being
less restrictive than discriminant analysis.

Other techniques, such as genetic algorithm, k-nearest
neighbour (see, e.g. [13],[14], [17]) have been used as well
in the construction of credit scoring models, although
infrequently. In the recent years data mining techniques
and neural networks have been widely applied [20].

Data mining techniques have been performed particu-
larly through the decision tree [16] approach, being the
resulting decision trees interpretable and visualizable quite
easily.

In this paper we propose a credit scoring methodology
based on a statistical pattern recognition algorithm. The
proposed algorithm is non-parametric, i.e. no distribu-
tional assumptions are required on the data. It is based on
a constrained k-means clustering algorithm [3] and allows
for subclasses determination inside a class.
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The proposed algorithm will be tested on benchmark
datasets from the UCI Repository of Machine Learning!
and its performance compared with other well known
pattern recognition techniques for credit scoring, namely:
Classification Trees, Logistic Regression and k-nearest
neighbour (k-nn) (see, e.g. [16],[13], [15] [11]).

The paper is organized as follows: in section II the
proposed algorithm will be presented together with some
general remarks on the data on the representativeness
of the training sample with respect to the population.
In Section IIT the experimental setup will be described,
together with the results of the performances of the four
techniques obtained in a cross-validation framework. Then
in Section IV some conclusions will be drawn.

II. THE ALGORITHM - T.R.A.C.E.

The algorithm presented in this paper (T.R.A.C.E.: To-
tal Recognition by Adaptive Classification Experiments) is
a supervised classification algorithm [14], i.e. a data set of
elements with known classes is supposed to be available.
The performance of the algorithm is assessed via cross-
validation [11].

Given a data set of n pattern vectors in P, assume a
partition defined on the dataset, i.e. each pattern vector
is assigned to one and only one of k& known classes. Such
a dataset will be called piecewise linearly separable. Let
assume a Fuclidean norm defined on the dataset and let
1 be a function from RP onto the set C = {1,2,...,k}
which maps each pattern vector x;,7 = 1,...,n into
the class ¢ € C that it belongs to. T.R.A.C.E. begins
computing the barycentre of each class, yielding an initial
set of k barycentres. Then the Euclidean distance of each
pattern vector from each barycentre is computed. If each
pattern vector is closer to the barycentre of its class the
algorithm stops, otherwise there will be a non empty set
M of pattern vectors which belong to a class and are
closer to a barycentre of a different class. In M select the
pattern vector x,, that is farthest from the barycentre of
its class. This pattern vector will be used as a seed for a
new barycentre for class ¥(x,). A k-means algorithm [3]
will then be performed for all the pattern vectors in class
1(xy) using, as starting points, the set of barycentres for
class 9¥(x,) and the vector x,, . Once the k-means has
been performed the set of barycentres will be composed
of k + 1 elements. The barycentres at the new iterations
need not be computed for all classes, but only for class
1 (Xw), since the barycentres for the other classes have
remained unchanged. In the following step the distance of
each pattern vector from all the barycentres is computed
anew, and so is the set M (see Figure 1).

If M is not empty then the pattern vector in M which
is farthest from a barycentre of its own class is once
again selected to serve as a seed for a new barycentre.
This procedure iterates until the set M is empty. The

luct Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.
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Fig. 1: : T.R.A.C.E.: flow-chart

convergence of the T.R.A.C.E. in a finite number of steps
has been proved in various ways (see [7],[8]).

Upon convergence, T.R.A.C.E. yields a set of barycen-
tres which, in the worst case, are in a number equal to the
number of elements in the dataset and which has a lower
bound in the number of classes.

The aim of this algorithm is to find subclasses in the
dataset which can be used to classify new vectors of
unknown class. It is worth noticing that if the partition
defined on the dataset is consistent with the features
considered, i.e. if the pattern vectors are linearly separable,
then T.R.A.C.E. generates a number of barycentres equal
to the number of classes. On the other hand, if the dataset
is not linearly separable, then T.R.A.C.E. continues split-
ting the classes until the subclasses obtained are linearly
separable. It is obvious that it can continue splitting
until all the subclasses are composed of only one vector
(singleton). It will not converge only if two vectors in the
dataset belong to different classes and are represented by
the same pattern vector [7],[8]. This problem can be easily
overcome increasing the dimension of the vector space.

Once T.R.A.C.E. has converged the sets of barycentres
can be used to classify new query points assigning the new
element to the class of the barycentre it is closest to. If
elements from the training set are used as query points
then the algorithm always classify them correctly because,
once converged, all pattern vectors in the training set are
closer to a barycentre of their own class.
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A. The data problem

If a classifier is defined according to this method on
a piecewise linearly separable training set, a completely
correct partition of the training set will be returned if the
algorithm is allowed to run until convergence [7].

If the algorithm is applied on a collection of objects, in
which there is no clustering structure (i.e. the classification
is spurious) the algorithm will still run until convergence,
provided that the dataset is piecewise linearly separable,
but since the class of each element is spurious, the number
of barycentres will be very large, almost equal to the
number of elements in the dataset. Such a situation can
then be considered as a meter of the spuriousness of the
clustering structure in the data. An excessive number of
barycentres may arise even in presence of some meaningful
relationships in the data; possible causes are:

o the pattern vectors show a clustering structure in the
data but this structure is however swamped by noise
and so data reduction technique may be useful [12],
[5].

e there is a clustering structure in the data, but the
number of features collected is not sufficient enough
to discriminate adequately, therefore, due to the lack
of sufficient information, elements that theoretically
belong to different classes show pattern vectors very
similar due to the lack of sufficient information.
These elements will create, in training, subclasses
with few or just one element (singletons). Therefore
the presence of many barycentres with just one or
very few elements may be considered indicative of
the fact that the characteristics collected on the data
(pattern vector) are not sufficient to discriminate
between classes. If the clustering structure is really
present in the data then this problem can be easily
overcome by increasing the dimension of the pattern
vector through the collection of further information
on the data (see e.g. [6], [4]) or using non linear
transformation on the pattern vector (see e.g. [2]).

« undersampling of some subclasses in the population.

The latter case can cause problems in verification due
to data coherence often caused by a small training sample
size or by undersampling in specific subclasses of the
population under study. Assume that a particular subclass
is underrepresented in the data set, e.g. the data set
contains only one instance of that particular subclass. If
this item falls in the training sample, then it will be set
aside to form a distinct barycentre (singleton), which will
be composed only of a single element. Nothing more should
happen and, of course, because of the singleton sample
the barycentre vector, understood as the mean vector of
a set of like objects, will be not a good estimate of the
population values. On the other hand, if this objects,
which will constitute a singleton barycentre set in training,
falls in verification it will be assigned to the wrong class
because it will find no opportune barycentre in the training
set, since there it figured as a singleton and will be nearer
to a barycentre of another class, as otherwise in training

Stepl Let

— Xj,j=1,...,n be the pattern vectors in the data set
— Bo be the set of k initial barycentres b;, i =1,...,k
Step2
Compute the distances of each x; from all the b; € Bt
Let M be the set of x,, that are closer to a barycentre of a
class different from their own.
t—0
Step3 while M # ()
— Let x5, s € M be the vector with the greatest distance
from its own barycentre.
- c—(xs)
— Let Bi41 «— Bt Uxs
— for all the elements of class ¢ perform a k-means routine
using as starting points the barycentres of Biii that
belong to class ¢
— t—t+1
— Compute the distances of each x; from all the b; € Bt
— Let M be the set of x,, that are closer to a barycentre of
a class different from their own.

end
Step4 for (b; € By)

case #b;
1 : label the element in x; € b; for training
{2,4} : label % of the elements €b; for training
{3,5} :label 2 of the elements €b; for training
end

end

Fig. 2: : Labeling algorithm in meta-language

it would not have formed a new barycentre. Thus because
of reduced size of the sample classification errors will be
made, which would not occur if the training set was much
larger or more representative. If the training sample is not
collectively exhaustive this will give rise to error. Thus the
training set must be consistent in the sense of collective
exhaustiveness of the patterns in the population. Hence, to
help improve the representativeness of the training set, it is
often worthwhile to sample the training set with a stratified
sample instead of a simple random sample. This procedure
will be called labeling. To do this it is advantageous to
sample less than proportionally those objects that appear
in very small subgroups. Thus a very small probability
of being chosen in verification is given to those objects
that in classifying the complete data set turn out to form
a singleton barycentre and are the only member of that
subgroup. Such a probability should be so small, to all
intents and purposes, as to exclude that pattern from being
chosen in verification and a slightly larger probability is
chosen if a doubleton barycentre set is formed, so that on
average one object of the couple may be chosen but not
both. In the same way, structured sampling probabilities
should be chosen for 3, 4 and 5 element barycentre sets,
so that on average not more than half of the constituent
elements are likely to be chosen. This will be implemented
in practice by excluding from choice objects which are
assigned to singleton barycentres and restricting to not
more than half those objects which are assigned to these
subgroups with low consistency, see [10].

The labeling procedure has been displayed in meta
language in Figure 2.
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III. EXPERIMENTAL RESULTS
A. Ezperimental Setup

The proposed algorithm has been compared with three
other well established techniques used in credit scoring,
namely nearest-neighbour classifier, logistic regression and
classification trees.

The dataset used are the two benchmark datasets made
public from the University of California Irvine repository
of machine learning. The first data set, called Australian
credit data by [18] concerns credit card applications. It
is made up of 690 observations and 15 variables (class
variable included) This dataset is interesting because there
is a good mix of variables (continuous, nominal with small
numbers of values, and nominal with larger numbers of
values).

The second data set, called German credit data, was
provided by Prof. Hofmann in Hamburg in the numeric
version provided by Strathclyde University. In the latter
version it is made up of 1000 observations and 25 variables
(class variable included).

To assess the performance of the various classification
techniques, first the resubstitution correct classification
rates have been computed, training and testing the algo-
rithms on the whole data both for the Australian and for
the German dataset. The results are depicted in Table I.
No preprocessing of the data was performed whatsoever.

TABLE I: Resubstitution correct classification rate

TRACE k-nn  Logistic CART
AUS 1.0000  1.0000 0.8754  0.8826
GER 1.0000 1.0000 0.7850  0.7870

As expected, T.R.A.C.E. and k—nn (k = 1) achieve
perfect recognition on the training set. Therefore if the
training sample can be considered a good representation
of the whole population, then the two algorithms can be
expected to perform well in classifying new entities. Lo-
gistic and classification trees, on the other hand, perform
very well, although they do not reach perfect recognition.
The performance of both Logistic and classification tree is
much better on the Australian dataset, suggesting that the
German data could be considered a more difficult problem.

The resubstitution classification rate is know to be a
overestimation of the performance of any algorithms. To
obtain a more reliable estimate a much better approach
consists in cross-validation. In the following we have ap-
plied 10%-cross-validation to assess the performance of
the various algorithms, i.e. the dataset is randomly split
into two parts, 10% of the data are randomly selected
for testing (test set) and 90% of the data are randomly
selected for training (¢raining set) the algorithm. The
performance of the trained algorithm on the test set should
be a good indicator of the performance of the algorithm on
new data since the test set is independent of the training
set. To obtain a more stable estimate this procedure is
repeated 100 times, each time randomly selecting training
set and test set.

B. Results

In the following the cross-validation results of the per-
formance of T.R.A.C.E. will be reported and will be
compared with 1—nn, Logistic regression and classification
trees.

To fine-tune the proposed algorithm it has been applied
on the original data and on data after standardization
of each variable, obtained subtracting the mean and di-
viding by the standard deviation. T.R.A.C.E. has been
applied both in the normal mode and in the labeling mode
(stratified). In Table IT and Table III the results of the
performance of T.R.A.C.E. on the Australian and on the
German dataset over 100 trials have been depicted.

TABLE II: Cross-validation results for the proposed algo-
rithm - Australian credit dataset

Mean Min 1st.Qu  Median 3rd.Qu Max

Original ~ 0.651  0.513 0.609 0.662 0.691  0.803
Standized  0.774  0.652 0.750 0.773 0.806  0.884
Stratified  0.814  0.667 0.780 0.815 0.844  0.922
Strat. St. 0.873 0.779 0.846 0.868 0.908  0.956

TABLE III: Cross-validation results for the proposed al-
gorithm - German credit dataset

Mean Min 1st.Qu Median 3rd.Qu Max

Original ~ 0.639  0.546 0.610 0.640 0.670  0.740
Standized  0.661 0.540 0.633 0.659 0.688 0.770
Stratified  0.753  0.635 0.723 0.747 0.781  0.854
Strat. St.  0.792  0.670 0.768 0.798 0.818  0.900

The average performance together with the worst (Min)
best (Max) and the 1°¢,2"¢ and 3"¢ quartiles of the distri-
bution of the correct classification rate over the 100 trials
have been detailed in both Tables. In both dataset the
performance of T.R.A.C.E. is better on standardized data
than on original data. The best performances are obtained
using labeling (stratified) with standardization, implying
that both datasets have variables with quite different
ranges and that both dataset show some subclasses that
have been undersampled, i.e. there are some homogenous
clusters (subclasses) in the datasets that are made up of
very few elements, therefore standardization and labeling
are necessary on the datasets. Hence, in the following,
the comparisons will be made on standardized data with
stratification.

In Table IV the average performances over 100 trials
of the four techniques on the Australian dataset are dis-
played, together with the worst (Min) and best (Max)
performance and with the 1,274 and 37¢ quartiles of the
distribution of the correct classification rate.

In Figure 3 the boxplots for the distributions of the
correct classification rates for the four techniques have
been depicted.

Almost all techniques work fairly well on the data, with
performances that are comparable and on average around
86 — 87% correct classification. The only technique which
does not perform optimally is the 1-nn, with an average
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TABLE IV: Cross-validation results comparisons - Aus-
tralian credit dataset

TABLE V: Cross-validation results comparisons - German
credit dataset

Mean Min 1st.Qu Median 3rd.Qu Max

Mean Min 1st.Qu Median 3rd.Qu Max

TRACE 0.873 0.779 0.846 0.868 0.908  0.956
k-nn  0.656 0.478 0.620 0.652 0.696  0.812
CART 0.858 0.754 0.841 0.855 0.884 0.971
Logistic  0.866  0.754 0.841 0.870 0.899  0.942

TRACE 0.792 0.670 0.768 0.798 0.818  0.900
k-nn  0.668 0.530 0.637 0.670 0.700  0.790
CART  0.747 0.640 0.720 0.750 0.772  0.860
Logistic  0.770  0.640 0.740 0.770 0.792  0.850

[e]

— ==

' ' °
[e]
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Correct classification rate
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TRACE k-nn logistic CART

Fig. 3: Australian Data - boxplots for the distributions of
the correct classification rates for TRACE, k-nn (k=1),
Logistic and Classification Trees (CART)

correct classification around 66% and, in the worst case,
obtaining also a classification rate under the random clas-
sification rate which is equal to 50% (see [11]). From the
boxplot (Figure 3) we can observe that the performance of
T.R.A.C.E. is on average comparable and slightly better
than the ones of Logistic and CART, and all perform
better than 1—nn. This could be due to the fact that
1—nn is too sensitive to noise and errors in the data,
the classification being performed only on the class of the
closest element in the training set.

T.R.A.C.E., on the other hand, classifying according to
the class of the barycentre closest to the query point, is
more capable of handling noise (additive white noise can
be averaged-out during the computation of the barycen-
tre).

In Table V analogous results are detailed for the German
credit database and in Figure 4 the corresponding boxplots
have been displayed. As can be observed, the average
performance of the proposed algorithm is better than
all the other techniques. Once again the performances of
T.R.A.C.E., Logistic and CART are still pretty much com-
parable, while 1—nn still performs worse than the other
techniques, although the difference in performance now is
not so pronounced. None of the considered techniques goes

0.9

0.8

Correct classification rate

0.6
|

T T T T
TRACE k-nn logistic CART

Fig. 4: German Data - boxplots for the distributions of
the correct classification rates for TRACE, k-nn (k=1),
Logistic and Classification Trees (CART)

below the random correct classification rate.

IV. CONCLUSIONS

A statistical pattern recognition algorithm based on
the k-means clustering technique has been presented in
this paper. The performance of the proposed technique
more then holds its own when compared with well es-
tablished techniques such as k-nn, Logistic regression and
Classification Trees and therefore could be used as an
automatic support technique in problems of credit scoring.
One of the main features of the proposed technique is
that it is not black-box-like, i.e. given a credit applicant,
not only it can classify him/her as good or bad with
a very high precision, but also, being based on the k-
means algorithm, it produces a set of subclasses of credit
applicants (all homogenous inside the subclass) which
can be considered as prototypes for the whole class of
credit applicants. Therefore not only the algorithm can
tell with a high precision whether the applicant is “good”
or “bad” according to the class of the barycentre which the
applicant is closest to, but also can give a description of
the type of applicant via the description of the class of the
barycentre which the applicant has been assigned to.
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