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Issues in Spectral Source Separation Techniques

for Plant-wide Oscillation Detection and Diagnosis

A.K. Tangirala and S. Babji

Abstract— In the last few years, three multivariate spectral
analysis techniques namely, Principal Component Analysis (PCA),
Independent Component Analysis (ICA) and Non-negative Matrix
Factorization (NMF) have emerged as effective tools for oscillation
detection and isolation. While the first method is used in deter-
mining the number of oscillatory sources, the latter two methods
are used to identify source signatures by formulating the detection
problem as a source identification problem in the spectral domain.
In this paper, we present a critical drawback of the underlying linear
(mixing) model which strongly limits the ability of the associated
source separation methods to determine the number of sources
and/or identify the physical source signatures. It is shown that the
assumed mixing model is only valid if each unit of the process gives
equal weighting (all-pass filter) to all oscillatory components in its
inputs. This is in contrast to the fact that each unit, in general, acts
as a filter with non-uniform frequency response. Thus, the model
can only facilitate correct identification of a source with a single
frequency component, which is again unrealistic. To overcome
this deficiency, an iterative post-processing algorithm that correctly
identifies the physical source(s) is developed. An additional issue
with the existing methods is that they lack a procedure to pre-screen
non-oscillatory/noisy measurements which obscure the identifica-
tion of oscillatory sources. In this regard, a pre-screening procedure
is prescribed based on the notion of sparseness index to eliminate
the noisy and non-oscillatory measurements from the data set used
for analysis.

Keywords— non-negative matrix factorization, PCA, source sep-

aration, plant-wide diagnosis

I. INTRODUCTION

The problem of source identification using multivariate

spectral analysis has been widely studied in various do-

mains such as chemometrics, speech processing, plant wide

oscillation detection and astronomy [1], [2], [3], [4], [5].

Multivariate spectral analysis is also used in image analysis,

classification and pattern recognition for understating the

underlying phenomena [7], [5]. Several techniques have been

used to identify of sources using the multivariate spectral

data. Some of the widely used methods are Independent

Component Analysis (ICA) and Nonnegative Matrix Factor-

ization (NMF).

In the application of the above two methods to multivariate

spectral analysis, the columns of the data matrix typically

are the spectra of individual measurements. The spectra are

obtained either by direct measurement [12], [7] or by Fourier
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transformation of the time domain measurements [9], [10],

[8]. In this work the focus is only on the data obtained

through latter means i.e. through Fourier transform of time

domain data. However, when this spectral data is used for

source identification in industrial processes, a linear mixing

model is assumed. In the earlier works [9], [6], [8] the linear

mixing model assumed for source identification is restrictive

and is only valid if each unit of the process gives equal

weighting (all-pass filter) to all oscillatory components in its

inputs. Thus, the model can only facilitate correct identifica-

tion of a source with a single frequency component, which

is again unrealistic. Further, in both source identification

methods (ICA and NMF), the number of sources should be

known apriori. However, with the assumed mixing model

the number of sources determination also poses difficulty

due to the fact that the model gives equal weighting to

all frequencies present in the data. The above issues are

discussed in section II.

Principal Component Analysis (PCA) is a well known

technique to detect the number of sources present in the

multivariate data set. PCA exploits correlations among the

multivariate process data to project the information in the

original measurement space on to a reduce order space

spanned by a set of orthogonal latent variables [2], [9], [10].

The dimension of the reduced space is an estimate of the

number of sources. However, the estimate is correct only in

the absence of measurement errors, non-linearities and noise

[3]. It is to be noted that PCA is not a source identification

technique.

Recently, a novel method to determine the number of

sources for NMF based methods has been proposed by

Tangirala et.al [8]. In their work the authors introduce the

notion of a Pseudo Singular Value (PSV) value to determine

the number of sources which is reviewed in III. In this work,

PSV to determine the number of basis shapes.

Strength factor, a measure of the amount of basis shapes

present in measurements which is defined by Tangirala et.al

[8] and reviewed in III is used as a post-processing tool to

overcome the restrictive nature of the assumed linear mixing

model.

The main contribution of this work are (i) explaining

the restrictive nature of the assumed linear mixing model

for source identification in industrial proceses and (ii)

development of a post-processing algorithm to overcome

the restrictive nature of the assumed linear mixing model.

Further, a pre-screening method is also used to eliminate

the non-oscillatory/noisy measurements which obscure the
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identification of oscillatory sources.

The rest of the paper is organized as follows. Section II

highlights the problems involved in determination of number

of physical sources and its signature with the assumed linear

mixing model. Section III describes the proposed methodol-

ogy for determination and identification of physical sources

present in the multivariate process data set. Simulation

studies are presented in Section IV which demonstrate the

practicality and utility of the proposed method. The article

ends with a few concluding remarks in Section V.

II. PROBLEM FORMULATION: RESTRICTIVE NATURE OF

THE EXISTING LINEAR MIXING MODEL

As discussed earlier, the existing linear mixing model

for oscillatory source signature identification in processes

gives equal weightage to all the frequencies present in the

process output, thereby neglecting the frequency domain

characteristics of the process. The assumed model is valid

only if the process behaves as an all-pass filter which is

mostly un-realistic. This is explained using the following

simple example.

Consider measurements of 3 individual variables x1, x2 and

x3 from a process such that the time domain relationship is

x3 = a1x1 +a2x2

Then their Fourier transforms are related through

X3(ω) = a1X1(ω)+a2X2(ω)

now, the relationship between the spectra of x1, x2 and x3 is

obtained as

|X3(ω)|2 = a11|X1(ω)|2 +a22|X2(ω)|2 +

2a1a2|X1(ω)||X2(ω)|cos(φ(ω))

where φ(ω) is the phase difference between |X1(ω)|
and |X2(ω)| at frequency ω . The cross term

2a1a2|X1(ω)||X2(ω)|cos(φ(ω)) is zero if one of the

following two conditions is satisfied for all frequencies

(i) x1 and x2 have non overlapping spectra

(ii) x1 and x2 have overlapping spectra but φ(ω) = π/2 for

all ω .

However, the above linear mixing model gives weightages

a1 and a2 to the process data. This is in contrast to the fact

that each unit, in general, acts as a filter with non-uniform

frequency response. Therefore, the weights a1 and a2 should

depend on the frequency response of the process. This is

missing in the existing linear model and hence suited only for

processes which acts as an all-pass filter. Further, the model

can only facilitate correct identification of a source with a

single frequency component, which is again unrealistic.

The assumption of equal weightage to all frequency com-

ponents in the data poses difficulty in both determination of

number sources and source signature identification. This is

due to the fact that both frequency attenuation and ampli-

fication takes place in the process, thereby yielding wrong

results with the usage of existing linear mixing model. These

facts are explained using a simulation example given below:

Example:

A simulated system shown in Fig. 1 (a) is taken up to illus-

trate the aforementioned shortcomings. The process contains

five LTI units (subsystems) with three closed-loops. The

transfer functions of the units and controllers are given in

Tables 1 and 2. Two sources of oscillations are considered,

namely, a sticky valve (a 1-parameter model is used) and

a tightly tuned controller. The former contains a spectral

signature with multiple peaks while the latter source contains

a signature with single peak (please see Fig. 1 (g)). Five

variables are measured whose spectra are shown in Fig. 1

(c).

The spectral matrix is constituted in the traditional way

and PCA is used to determine the number of sources. The

number of non-zero singular values obtained from PCA with

no noise in the data set is four (0.49,0.04,0.02 and 0.002)

indicating that there are four sources. This highlights the fact

that the determination of number of sources from the above

linear mixing model leads to incorrect results. Further, the

basis shapes obtained from NMF (with number of sources

as 4) is shown in Fig. 1 (d). It is clear that the method not

only fails to extract the correct source signatures but also

fails to estimate the correct number of physical sources. The

forthcoming section explains the proposed methodology with

an example using NMF for source identification to overcome

the above limitations in the linear mixing model.

III. PROPOSED METHODOLOGY

As discussed in Section I, the shortcomings in the existing

linear mixing model is overcome by the usage of a quantity

known as strength factor [8]. The iterative post-processing

algorithm is developed for source identification using NMF

technique. This method which is used to overcome the above

limitation of the model primarily relies on the assumption

that the source is present amongst the measurements. In most

cases this is easily satisfied since the control volumes are

large enough to contain the source(s).

The steps involved in the proposed post-processing

algorithm is given below:

1) Using the sparseness index, process variables

that contain non-oscillatory components and noise

elements are discarded. A threshold value of 0.8

is fixed for the sparseness index and all the basis

shapes with lower sparseness index values are

eliminated.

Significance

The sparseness index (definition adopted from paper

by Patrik [11]) of a vector ′x′ of dimensionality ′n′ is

given by

Sparseness(x) =

√
n−

(

∑ |x j|/
√

∑ |x j|2
)

√
n−1

From the equation it is clear that the sparseness index

decreases as the number of peaks and level of noise
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increases in the variable and hence in this work, it is

used as a pre-screening tool for source identification.

2) The spectra of the variables that are not eliminated

using pre-screening technique is computed and a

matrix containing the spectra of these variables is

formed. NMF is run on this matrix with the absolute

of initial values (Basis shapes B and weights W )

obtained from singular value decomposition (SVD)

of the spectral data matrix.

3) This step is concerned with the estimation of num-

ber of physical sources. Pseudo singular value

defined in [8] is used to estimate the number of

sources.

Significance

The notion of Pseudo Singular Value (PSV) was intro-

duced in the context of NMF to determine the number

of sources. Given a nonnegative matrix X , the PSV of

jth basis shape denoted by ρ j and has been defined as,

ρ j =
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where L is the number of basis shapes and Ck, the kth

power component is given by [8]

Ck =
M

∑
j=1

BkWk j

where Bk is the kth basis shape and Wk j is the weight

of the jth variable corresponding to Bk obtained from

NMF. XT , the total power at each frequency ωl is

defined [8] as

XT (ωl) =
M

∑
j=1

|X j(ωl)|2

where |X j(ωl)|2 is the power spectrum of

measurements at each frequency. The PSV signifies

the amount of information captured by the basis

shapes and ranges from 0 to 1 depending on the

spectral data information that can be explained by the

basis shapes.

4) This step is used to find the similarity between

the measurements and the basis shapes using a

measure known as Strength Factor (SF). SF has

been defined in [8] and it is computed between the

basis features of NMF and measurements.

Significance

Strength factor is a measure of the amount of basis

shapes present in measurements and is given by the

following equation

SFk j =
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where L is the number of basis shapes and X j is

the power spectrum of the jth measurement [8]. The

strength factor is a measure of the extent of the kth

basis feature in the jth measurement.

5) Steps 2 to 4 are repeated with decreasing number

of basis shapes untill each basis shape atleast

corresponds to one single measurement.

Significance

As explained earlier, it is assumed that the source is

present amongst the measurements. This gives rise to

the fact that the measurements corresponding to the

sources should completely explain the basis shapes

while the other measurements is a combination of the

basis shapes.

Demonstration of the proposed method using the

example in Section II

(i) For the example described in Section II, the sparseness in-

dex of the third measurement is closer to zero indicating that

this measurement is to be eliminated from the spectral data

matrix, while all the other measurements have sparseness

index values above the threshold. The plot of output variable

x3 shown in Fig. 1 (b) clearly reveals that the this output has

no oscillations. Therefore, the spectral data matrix is now

constituted of only four measurements namely x1,x2,x4 and

x5.

(ii)The number of non-zero PSV obtained from the spectral

data matrix in step 1 is three (0.93,0.05 and 0.02), indicating

three sources. However, this is not true since there are only

two sources. Therefore, a measure known as strength factor

(SF) is used in the next step to obtain the correct estimate

of the number of sources and identify its signatures.

(iii) Strength Factor computed between the original measure-

ments (without prescreening) and the basis shape feature is

shown in Fig. 1 (e). It can be clearly seen that two of the

basis shapes is not explained fully by the measurements.

Therefore, an iterative procedure is needed to estimate the

number of physical sources and identify its signatures.

(iv) Measurement three is eliminated by prescreening method

and therefore, it is clear that the fourth basis shape is not

completely explained by any of the measurement. Hence this

particular basis shapes does not correspond to an individual

source. Now, NMF algorithm is re-run with the number of

basis shapes as two and the basis shapes are obtained. SF

computed between the basis shape features and measure-

ments is shown in Fig. 1 (f) which shows that each basis

shape feature is explained fully by individual measurements.

Therefore, the iterative procedure is complete and the basis
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shapes obtained from NMF is shown in Fig. 1 (h). Notice that

the basis shapes obtained correspond to the source signatures

which is shown in 1 (g). Thus the number of sources are

determined correctly along with its signatures.

IV. SIMULATION STUDIES

In this section a simulated industrial process is taken up

to demonstrate the potential of the proposed method.

Entech Data

The data set is from a simulated industrial process, courtesy

of Entech control Inc.The simulated process shown in Fig.

2 (a). consists of a pulp manufacturing process, where the

hardware and software pulps are mixed to give a stream of

desired composition. The data set comprises of 1934 samples

from 12 measurements associated with 12 control loops. It

is desired to detect oscillations in the loops and to determine

the physical sources present in the process.

Sparseness index computation reveals that measurment 2

can be eliminated from the data set since its value is below

the threshold. A time plot of the data is shown in Fig. 2 (b).

reveals that the measurement 2 is a noise element. Spectral

data matrix is formed with the remaining 11 measurements

and NMF algorithm is run initially with 9 sources. Three

non-zero PSV values are obtained (0.92,0.06 and 0.02)

indicating three sources. Now to obtain the signature of these

sources NMF is re-run with 3 sources.

SF values computed between the basis features and mea-

surents.The SF plot shown in Fig. 2 (c). reveals that one of

the basis shapes is not explained completely. Therefore, as

explained in Section III, NMF algorithm is re-run with num-

ber of sources as 2. The strength factor computed between

the basis shapes and measurements are shown in Fig. 2 (d).

It clearly reveals the fact that there are only 2 sources in the

process which is also confirmed from the knowledge of the

process [8]. It has been stated in that valve stiction and poorly

tuned controller are sources of oscillation in this process. The

results obtained from the proposed method are in agreement

with the results presented in earlier works. Further, the basis

shapes obtained from the proposed method are shown inFig.

2 (e) along with the physical source signatures in Fig. 2 (f).

It can be clearly seent that the physical source signatures are

identified correctly using the proposed methodology.

V. CONCLUSIONS

This work brings into light the restrictive nature of the

existing linear mixing model used for source identification

from a multivariate process. It was shown that the existing

linear model gives equal weightage to all the frequencies

which can be used only if one of the following two conditions

is satisified

(i) the process behaves as an all-pass filter.

(ii) there is only a single frequency component present in the

input to the process.

A simulated example was used to demonstrate the restrive

nature of the existing mixing model. A post-processing

algorithm was developed to overcome the deficiency present

in the model and to identify the source signatures. It was

assumed that the sources are present amongst the mea-

surements. In most cases this is easily satisfied since the

control volumes are large enough to contain the source(s).

An additional feature of the proposed method is the usage

of sparseness index to remove non-oscillatory and noisy

elements present in the multivariate data. It is to be noted

that the elimination of variables using sparseness index is

to avoid computation burden and the proposed method is

insenstive to the sparseness index.

The proposed methodology is used to estimate the number

of sources and its signatures. Diagnosis of the cause of

oscillations by using the proposed method along with the

plant topology is a subject of future work.
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Fig. 1. (a) Simulated system (b) Process output from loop 3 in the linear system (c) Measurement spectra (d) Basis shapes from existing algorithm (f)
Condensed plot of strength factors from traditional method (g) Condensed plot of strength factors from proposed method (h) Physical source signatures
(e) Identified source signatures using proposed algorithm



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:2, No:7, 2008

75

Fig. 2. (a) Schematic of Entech process (b) Process output from loop 2 (c) Strength factor obtained from traditional method (d) Strength factor obtained
from proposed method (e) Identified source signatures using proposed algorithm (f) Physical source signatures


