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Quadrature formula for sampled functions
Khalid Minaoui, Thierry Chonavel, Benayad Nsiri, Driss Aboutajdine

Abstract—This paper deals with efficient quadrature formulas
involving functions that are observed only at fixed sampling points.
The approach that we develop is derived from efficient continuous
quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis
quadrature. We select nodes at sampling positions that are as close as
possible to those of the associated classical quadrature and we update
quadrature weights accordingly. We supply the theoretical quadrature
error formula for this new approach. We show on examples the
potential gain of this approach.

Keywords—Gauss-Legendre, Clenshaw-Curtis, quadrature, Peano
kernel, irregular sampling.

I. INTRODUCTION

IN general, integration of a known function, say f , is
achieved through quadrature formula. We assume that f is

continuous on the interval [−1, 1] and we look for its integral
on this interval. Adapting results to any finite interval of
the form [a, b] would be straightforward. Classical quadrature
formulas are calculated from the value of f at n prescribed
nodes and quadrature yields the integral of the corresponding
Lagrange interpolant [1] of f . As a consequence, such a
quadrature formula is exact whence f is a polynomial with
degree at most n − 1.

Unfortunately, when calculated at regularly spaced points
of an interval, Lagrange interpolants are flawed due to large
oscillations at the interval ends that increase with the number
n of interpolation points, even for flat functions : although
the interpolation error of Lagrange interpolants is zero at
interpolation points, it increases with n between successive
interpolation points. This phenomenon is known as Runge phe-
nomenon [2][3]. In particular, Newton-Cotes quadrature that
performs the integral of Lagrange interpolant from regularly
sampled values of f becomes numerically unstable for n as
small as a few tenth. However, the situation is not desperated
since Weierstrass’ theorem states that if f is continuous on a
closed interval, then there exists a sequence of polynomials
with increasing degrees that uniformly converges to it [4].

One way to get a better polynomial interpolant for integrand
f(x) consists in building it from irregularly spaced points.

K. Minaoui is with Lab-STICC (CNRS FRE 3167), Institut Telecom,
Telecom Bretagne, Technopole Brest Iroise, 29238 Brest, France and with
Laboratoire LRIT, unité associé au CNRST, Faculté des Sciences de Ra-
bat, Université Mohammed V Agdal, Morocco. khalid.minaoui@telecom-
bretagne.eu.

T. Chonavel is with Lab-STICC (CNRS FRE 3167), Institut Tele-
com, Telecom Bretagne, Technopole Brest Iroise, 29238 Brest, France.
Thierry.chonavel@telecom-bretagne.eu.

B. Nsiri is with Faculté des Sciences Ain Chock, Université Hassan
II, Casablanca and with Laboratoire LRIT, unité associé au CNRST, Fac-
ulté des Sciences de Rabat, Université Mohammed V Agdal, Morocco.
Benayad.nsiri@telecom-bretagne.eu.

D. Aboutajdine is with Laboratoire LRIT, unité associé au CNRST,
Faculté des Sciences de Rabat, Université Mohammed V Agdal, Morocco.
aboutaj@ieee.org.

More precisely, nodes should be chosen in such a way
that their asymptotic density distribution is proportional to
1/

√
1 − x2 [2]. In particular, Gauss-Legendre (GL) quadrature

[5] and the more recent Clenshaw-Curtis (CC) quadrature
introduced in 1960 [6] have quadrature nodes that share this
property. Both show very good and quite similar performance
for a large variety of integrands [7].

CC quadrature is a bit less precise than GL quadrature; In
particular, CC quadrature integrates exactly polynomials with
degree up to n−1, while GL quadrature is exact up to degree
2n−1 [8]. GL quadrature nodes and weights can be computed
at the expense of O(n2) operations by solving an eigenvalue
problem [9], while for CC quadrature they can be calculated
at the expense of O(n.log2(n)) operations only, thanks to the
FFT [10].

In signal processing one often has to integrate a func-
tion f that is observed only at fixed sampling points y =
(y1, . . . , ym)T , with −1 ≤ yk < yk+1 ≤ 1 for k = 1, . . . , m−
1. Ambiguity function calculation [11], numerical solution of
first kind integral equations [12] or filtering [13] are classical
examples where numerical integration is useful. In this paper,
we are looking for the calculation of

∫

[−1,1]
f(x)dx from

f(y1), . . . , f(ym). In order to perform this task in an efficient
way, we must account for the above discussion about the
optimum node location. To this end, we are going to perform
approximate GL or CC quadrature by selecting n nodes in
y that are closest to nodes of a GL or CC quadrature with n
nodes. As the density of samples increases (m becomes large),
these n nodes tend to approach the true GL or CC nodes. In
addition, quadrature weights will be chosen accordingly, that
is, to ensure exact quadrature for polynomials up to degree
n − 1.

The rest of the paper is organized as follows. In section 2
we recall basics about GL and CC quadrature and we describe
the new, data fitting, quadrature scheme and we derive the
expression of its error function. The examples in section 3
show the good behavior of this approach. In particular, we see
how it can be used in ambiguity functions calculation.

II. QUADRATURE FORMULAS

A. Gauss-Legendre and Clenshaw-Curtis quadrature

Letting f(x) and w(x) > 0 denote two continuous func-
tions, we consider a quadrature formula of the form

I =
∫ 1

−1

w(x)f(x)dx ≈
∑

i=1,m

wif(xi). (1)

For the scalar product associated to w(x) and defined by

< g1, g2 >=
∫ 1

−1

w(x)g1(x)g2(x)dx, (2)
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we denote by pk(x) the degree k orthonormal polynomial:
< pi(x), pj(x) >= δi,j , where δi,j is the Kronecker’s delta
function. Then, the quadrature formula (1) is exact for all poly-
nomials of degree at most 2n− 1, provided nodes x1, . . . , xn

are the zeros of pn(x) ([5] p. 74).
In particular, GL quadrature follows this principle, where

w(x) = 1 for all x in [−1, 1]. Thus, nodes xi are defined by
the roots of the degree n Legendre polynomial. The weights
w = (w1, . . . , wn)T are the solutions of equations

∫ 1

−1

xkdx =
∑

i=1,n

wix
k
i , k = 0, ..., n − 1. (3)

Efficient algorithms for computing quadrature rules can be
found in the literature [9] (see also [5]) and practical im-
plementations are available for many programming languages
(see for instance [5] and [7] for a MATLAB implementation).
CC quadrature can be seen as a modified GL quadrature, where
nodes are simply given by [6]

xk = cos
n − k

n − 1
π, k = 1, . . . , n. (4)

CC nodes are in fact the extrema of Chebyshev polynomials
in [−1, 1] and they remain quite close to GL nodes that can
be written in the form ([5] p.89)

xk = cos
(

n − k − 1/4
n + 1/2

π + o(
1
n

)
)

, k = 1, . . . , n. (5)

B. Quadrature from sampled functions

For a continuous function f sampled at points y =
(y1, . . . , ym)T , there is generally no reason for points y to con-
tain nodes of any standard quadrature formula, except when
considering the particular case of regular sampling together
with Newton-Cotes quadrature. But in this case, quadrature
performs poorly as discussed earlier.

Thus, with a view to get quadrature nodes that tend to be
distributed as GL or CC nodes, we consider a GL or CC
quadrature, with n nodes and n < m, and we select the n
points in y that are closest to GL or CC nodes. These points
in y define the nodes for the new quadrature. Let us denote
these points by x̂ = (x̂1, . . . , x̂n)T . These nodes are associated
with weights ŵ = (ŵ1, . . . , ŵn)T that ensure exact quadrature
for polynomials with degree up to n − 1. In other words, ŵ
is the solution of the following linear set of equations:
∫ 1

−1

xkdx =
(1 − (−1)(k+1))

k + 1
=

n
∑

i=1

ŵix̂
k
i , k = 0, . . . , n−1.

(6)
Thus
⎛

⎜

⎜

⎜

⎝

ŵ1

ŵ2

...
ŵn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 ... 1
x̂1 ... x̂n

...
...

x̂n−1
1 ... x̂n−1

n

⎞

⎟

⎟

⎟

⎠

−1 ⎛

⎜

⎜

⎜

⎝

2
0
...

1−(−1)n

n

⎞

⎟

⎟

⎟

⎠

. (7)

In a matrix form, we get

ŵ = M̂−1ĉ. (8)

Note that the inverse matrix can be calculated in closed form
(see Appendix A).

For f ∈ Ck[−1, 1] and a quadrature defined by nodes x and
weights w that integrates exactly polynomials up to degree
k − 1 at least, the quadrature error is given by ([5] pp. 218-
223)

E(f) =
∫ 1

−1

f(x)dx −

n
∑

i=1

wif(xi)

=
∫ 1

−1

f (k)(x)Nk(x)dx,

(9)

where Nk(x) is Peano’s Kernel:

Nk(x) =
(1 − x)k

k!
−

n
∑

i=1

wi

(xi − x)k−1
+

(k − 1)!
, (10)

and g+(x) = max(0, g(x)).
In the same way, we have proved that, up to a second

order term, the theoretical error for the approximate GL or
CC quadrature rule that we have defined here above is equal
to the GL or CC quadrature error with an additional term
that linearly depends on nodes perturbations. We shall denote
by x = (x1, . . . , xn)T and w = (w1, . . . , wn)T the GL
or CC quadrature nodes and weights repectively, and we let
x̂ = x + δx and ŵ = w + δw the perturbated nodes and
weights. The following theorem supplies the expression of the
error for quadrature parameters (x̂, ŵ) and its proof is supplied
in appendix A.

Theorem 1: For a k differentiable function f : [−1, 1] →
R, denoting by Nk(τ) its Peano Kernel for the quadrature
parameters (x,w), then for parameters (x̂, ŵ) = (x+δx,w+
δw) the quadrature error is given by the following expressions,
up to a second order term in δx:

E(f) =
∫ 1

−1

f (k)(x)N̂k(x)dx, (11)

where

N̂k(x) ≈ Nk(x) −
n

∑

i=1

δxi
wi

(

(xi − x)k−2
+

(k − 2)!
(12)

−
n

∑

j=1

n
∑

u�=j

(

n
∏

r �=j,u

(xi − xr)
)

n
∏

t�=j

(xj − xt)

(xj − x)k−1
+

(k − 1)!

)

.

Theorem 1 shows in particular that when the number of
sampling points increases with maximum distance between
contiguous points decreasing to 0 then maxk=1,m δxk

→ 0
and N̂k(x) → Nk(x) as one may expect. Furthermore,
although minimization of the amplitude of N̂k over possible
nodes would be a challenging combinatorial problem, Eq.
(12) suggests the simpler approach that consists in minimizing
errors |δxk

| by selecting x̂ as close as possible to exact GL or
CC nodes.

We shall call quadrature with parameters (x̂, ŵ) the quan-
tized GL (QGL) or quantized CC (QCC) quadrature respec-
tively, depending whether initial parameters (x,w) are GL or
CC parameters.
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III. EXAMPLES

A. Basic examples

The higher the number of nodes, the more accurate the
quadrature with parameters (x̂, ŵ) should be. This is illus-
trated in Figure 1 for n = 10 nodes where the quadrature
errors for f(x) = xk are plotted for increasing values of
k. For CC and GL quadrature, we check that error can be
canceled (up to machine precision) for k ≤ 9 with CC and
k ≤ 19 with GL. QGL and QCC performance are plotted for
m = 50, 150 and 300 regularly sampled data. Both QGL and
QCC have performance that are little degradated compared to
what would supply CC if samples at exact CC nodes (Eq. (4))
were available.
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Fig. 1. Integration error for f(x) = x
k as a function of k for several data

sizes (50,150,300) (a) GL and QGL (b) GC and QCC.

On another hand, we have checked that using QGL or QCC
with nodes x̂ but with GL or CC weights w instead of ŵ
results in serious performance loss, especially for low degree
polynomials quadrature.

Figure 2 shows quadrature error for polynomial x20 as
a function of the number of quadrature nodes and for 100
regularly spaced samples. We check that the theoretical error
supplied by theorem 1 is very close to simulation results.

Now, we consider
∫ 1

−1
(1 + x2)−1dx calculated from 50

samples obtained at random points. Mean QGL and QCC error
with dispersion bars for 10 experiments are plotted in Figure 3.
QGL and QCC achieve quite similar performance. In addition,
we have checked that they are very good compared to Riemann
or Simpson quadrature that yield error no better than 3 10−2

when using all data.
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Fig. 2. Integration error for f(x) = x
20 as a function of number of nodes

for data size = 100 (a) GL and QGL (b) CC and QCC.

B. Quadrature using all samples

We have seen that good results are obtained when using
quadrature parameters (x̂, ŵ) from sampled data. Let us
consider the issue of further quadrature error reduction when
using all m available data points. Whence the n QGL or QCC
nodes and weight are fixed and denoted by (x̂k

i , ŵi)i=1,...,n.
The quadrature in this case will be written as,

I =
∫ 1

−1

w(x)f(x)dx ≈
∑

i=1,n

ŵif(x̂i)+
∑

j=1,s

w̄jf(x̄j), (13)

where s = m − n. The x̄j’s are samples that are not used in
QGL or QCC quadrature. Then, to calculate the weights w̄j

we minimize the quantity

L−1
∑

k=0

∥

∥

∥

[

∫ 1

−1

xkdx −
∑

i=1,n

ŵix̂
k
i

]

−
∑

j=1,s

w̄j x̄
k
j

∥

∥

∥

2

, (14)

for some order L. We use the following notations : ŵ =
(ŵ1, · · · , ŵn)T , w̄ = (w̄1, · · · , w̄s)T ,

a =

⎛

⎜

⎜

⎜

⎝

2
0
...

(1−(−1)(L))
L

⎞

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

1 1 ... 1
x̂1 x̂2 ... x̂n

...
...

...
x̂L−1

1 x̂L−1
2 ... x̂L−1

n

⎞

⎟

⎟

⎟

⎠

ŵ,
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Fig. 3. (a) QGL and (b) QCC quadrature error as a function of the number
of nodes for f(x) = (1 + x

2)−1 and 50 randomly sampled data.

and

X =

⎛

⎜

⎜

⎜

⎝

1 1 ... 1
x̄1 x̄2 ... x̄s

...
...

...
x̄L−1

1 x̄L−1
2 ... x̄L−1

s

⎞

⎟

⎟

⎟

⎠

,

where .T is the transpose operator. Then, we rewrite criterion
(14) in a matrix form as follows :

∥

∥

∥
a − Xw̄

∥

∥

∥

2

, (15)

and minimization of criterion (15) yields

̂w̄ = (XT X)−1XT a. (16)

As an example we choose n = 8 nodes from 50 regularly
sampled data. Figure 4 shows the quadrature errors for f(x) =
xk for increasing values of k. Performance are plotted for
exact and quantized quadrature as well as for L = 8, 16, 50
in criterion (15). We check that using all samples with L ≤
8, performance are similar to the QGL/QCC. Indeed, in this
case, we get w̄ = 0. For L > 8 performance are seriously
deteriorated for low degree polynomials. In addition we check
that matrix XT X is rather ill-conditioned. This shows that there
is no gain in trying to use sampled points that are not in x̂ by
minimizing criterion (14) over w̄.

C. Computation of ambiguity functions

In radar processing, an observed signal r(x) is issued
from reflections of an emitted waveform, say u(x). The cross
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Fig. 4. Integration error for f(x) = x
k as a function of k when using all

the points of the grid (a) GL, QGL and grid error (b) GC, QCC and grid
error.

ambiguity function between r and u is a useful tool for targets
detection and parameters estimation [11], [14], [15], [16]. It
is defined by

χru(τ, f) =
∫

∞

−∞

r(x)u∗(x − τ) exp(j2πfx)dx, (17)

where τ and f are the time delay and doppler frequency
parameters respectively. Clearly, for fixed f , τ → χru(τ, f)
is a convolution operation. More precisely, χru(τ, f) can be
seen as the output, at time τ , of the matched filter associated
with the waveform u(x) when r(x) demodulated at frequency
f is present at the input. When r(x) = u(x), χuu is called
the ambiguity function of the waveform u(x).

The cross-ambiguity between an echoed radar signal and
the emitted waveform u(x) shows attenuated and Doppler-
and-delay shifted versions of the ambiguity function of u(x)
that represent illuminated targets contributions. Of course,
for a given radar waveform one may derive specific fast
algorithms for targets detection and parameters estimation (see
for instance [17] for the case of linear chirp waveforms).
But, working with χru(τ, f) can be seen as a general way
to perform this task for any kind of waveform. In addition,
working with function χru(τ, f) enables recovery of possibly
very closely located sources in the time-frequency domain
[18].

Restricting here our interest to the ambiguity function



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

9

calculation, we consider a pulse train waveform defined by

u(t) =
1

√

Np

Np−1
∑

k=0

1
√

d
rect

(

t − kT

d

)

, (18)

where d is the pulse duration, Np the number of the pulses in
the train, T the pulse repetition interval and

rect(t) =
{

1 |t| ≤ 1/2
0 otherwise.

The corresponding ambiguity function is expressed as follow
[11], [14]:

χuu(τ, f) =
(

1 −
|τ |

d

) sin (πf(d − |τ |))
πf(d − |τ |)

rect(
τ

2d
)

×

Np−1
∑

q=−Np+1

∣

∣

∣

∣

sin (πf(Np − |q|)T )
Np sin (πfT )

∣

∣

∣

∣

. (19)

This ambiguity function is plotted in Figure 5 with parameters
d = 0.25s, Np = 4 and T = 1s.

Fig. 5. Ambiguity functions for a pulse train.

We compute χuu(τ, f) by dividing the integration interval
into N sub-intervals of the form [tk, tk+1] (k = 0, . . . , N−1).
Thus, letting hk = tk+1 − tk,

∫

u(x)u(x − τ)ej2πfxdx ≈

N−1
∑

k=0

∫ tk+1

tk

u(x)u(x − τ)

×ej2πfxdx

=
N−1
∑

k=0

hk

2

∫ 1

−1

u
(

tk +
(x + 1)

2
hk

)

×u
(

tk +
(x + 1)

2
hk − τ

)

×ej2πf(tk+
(x+1)

2 hk)dx.
(20)

We calculate integrals at regularly sampled points (τ, f)
from regularly sampled u :

∫

u(x)u(x − τ)ej2πfxdx ≈

N−1
∑

k=0

n
∑

i=1

h

2
ŵiu(ẑik)

×ej2πfẑiku(ẑik − τ),
=

∑

i,k

v(ẑik)u(ẑik − τ),

(21)

where ẑik = tk + (x̂i+1)
2 h and v(ẑik) = h

2 ŵiu(ẑik)ej2πfẑik .

For QGL or QCC quadratures ŵi are either zero or equal to
quadrature weights, depending wether samples ẑik are QGL or
QCC nodes respectively. For Riemann quadrature, all weights
are equal. Then, in Eq. (21), convolution between u and v can
be done in the Fourier domain by using FFT and inverse FFT
algorithms.

Letting χ̂uu(τ, f) denote the calculated approximation of
the ambiguity function, we consider the performance indices
given by the mean square error, that is defined by

MSE = mean(τ,f)

(

|χ̂(τ, f) − χ(τ, f)|2
)

. (22)
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Fig. 6. Mean square error as a function of the number of nodes.

Figure 6 shows mean square error MSE as a function of the
number of quadrature nodes. Quadrature is achieved by slicing
the convolution interval into 8 sub-intervals. 16 samples are
available in each sub-interval from which QGL or QCC nodes
are selected.

As far as complexity is considered, for Riemann quadrature,
the FFTs for calculating the convolution in Eq. (21) are
classically calculated at the expense of O(Nn log Nn). To get
the corresponding complexity for QGL or GCC we account
for results supplied in [19] that present a complexity analysis
of the FFT of sparse vectors, that is, vectors that contain many
zero entries. Then, when QGL or QCC is performed with 8
nodes the FFT requires about 850 multiplications, which is the
same order of complexity as for Riemann quadrature with 15
nodes. However, with 8 nodes, MSE = 7 10−4 for QGL or
QCC, while MSE = 1.6 10−3 for Riemann with 15 nodes.
Thus, for similar complexity significantly better accuracy is
achieved by QGL and QCC.

IV. CONCLUSION

In this paper we have introduced a new approach for
quadrature of functions observed only at (possibly irregular)
sampling positions. We have checked very good theoretical
and practical quadrature error performance for this approach,
and we have shown that this technique can be useful in
particular for calculating ambiguity functions.
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APPENDIX A
ERROR FORMULA FOR APPROXIMATE QUADRATUR

Let us consider a quadrature formula with n nodes and
parameters (x,w) and f in Ck[−1, 1], with k ≤ n. Then error
formula (11) is satisfied. Now, we consider the perturbated
quadrature (x̂, ŵ) = (x + δx,w + δw). The Peano kernel of
this new quadrature is

N̂k(x) =
(1 − x)k

k!
−

n
∑

i=1

(wi + δwi
)
(xi + δxi

− x)k−1
+

(k − 1)!
,

Let us assume that k ≥ 2. The first order Taylor expansion of
the term (xi + δxi

− x)k−1
+ yields

(xi + δxi
− x)k−1

+ ≈ [(xi − x)k−1
+ +

(k − 1)δxi
(xi − x)k−2

+ ]1Ix≤xi+δxi
,

with 1IA(x) = 1 if x ∈ A, and 1IA(x) = 0 otherwise. Then,
up to second order terms in δx, we get

N̂k(x) ≈
(1 − x)k

k!
−

n
∑

i=1

(

δwi

(xi − x)k−1
+

(k − 1)!
(23)

+wi

( (xi − x)k−1
+

(k − 1)!
+ δxi

(xi − x)k−2
+

(k − 2)!

)

)

1Ix≤xi+δxi
.

Now, if we assume that quadrature is exact for polynomials
with degree up to n−1 at least, it is clear that w is completely
specified from x. Indeed, since
∫ 1

−1

xkdx =
∑

i=1,n

wix
k
i =

(1 − (−1)(k+1))
k + 1

, k = 0, ...,m−1,

(24)
and w is the solution of the following matrix equation:

⎛

⎜

⎜

⎜

⎝

1 ... 1
x1 ... xn

...
...

xn−1
1 ... xn−1

n

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

w1

w2

...
wn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

2
0
...

1−(−1)n

n

⎞

⎟

⎟

⎟

⎠

. (25)

In a matrix form, we rewrite Eq. (25) as

Mw = c. (26)

In order to supply more precise expression of N̂k(x) when
both (x,w) and (x̂, ŵ) satisfy Eq. (25), let us express N̂k(x)
only in terms of (x, δx,w) by relating δw to other parameters.
This is achieved as follows: letting

δwi
=

n
∑

j=1

∂wi

∂xj

δxj
, (27)

the term

T =
n

∑

i=1

δwi
(xi − x)k−1

+ (28)

in Eq. (23) can be rewritten as

T =
(

δx1 δx2 ... δxn

)

×

⎛

⎜

⎜

⎜

⎝

∂w1
∂x1

... ∂wn

∂x1
∂w1
∂x2

... ∂wn

∂x2
...

...
∂w1
∂xn

... ∂wn

∂xn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

(x1 − x)k−1
+

(x2 − x)k−1
+

...
(xn − x)k−1

+

⎞

⎟

⎟

⎟

⎠

.

On another hand, derivation of (26) with respect to xi yields

wi

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
1

2xi

...
(n − 1)xn−2

i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ M

⎛

⎜

⎜

⎜

⎝

∂w1
∂xi

∂w2
∂xi

...
∂wn

∂xi

⎞

⎟

⎟

⎟

⎠

= 0.

But, M is a VanderMonde matrix and thus its inverse can be
expressed in closed form [20], [21]. In fact, we have

T = −
(

δx1 ... δxn

)

diag(w1, ..., wn)

×

⎛

⎜

⎜

⎝

0 1 ... (n − 1)x(n−2)
1

...
...

0 1 ... (n − 1)x(n−2)
n

⎞

⎟

⎟

⎠

S

×diag

(

1
nQ

k �=1
(x1−xk)

, · · · , 1
nQ

k �=n

(xn−xk)

)

×
(

(x1 − x)k−1
+ , . . . , (xn − x)k−1

+

)T
,

(29)

where

Sij = (−1)n−i

n
∑

i1+i2+...+in=m

(

n
∏

s�=j

is∈{0,1}

xis

s

)

.

Since

n
∑

r=1

xr−1
i Srj =

n
∏

r �=j

(xi − xr), (30)

deriving both sides of Eq. (30) w.r.t xi yields

n
∑

r=1

(r − 1)xr−2
i Srj =

n
∑

u�=j

(

∏

r �=j,u

(xi − xr)
)

. (31)

Clearly, Eq. (31) supplies entry (i, j) for the product of the
two non-diagonal matrices in the expression of T in Eq. (29).
Finally,

T = −

n
∑

ij

δxi
wi

n
∑

u�=j

(

n
∏

r �=j,u

(xi − xr)
)

n
∏

t�=j

(xj − xt)
(xj − x)k−1

+ , (32)

and

N̂k(x) ≈ (1−x)k

k! −
∑n

i=1 wi1Ix≤xi+δxi

(

(xi−x)k−1
+

(k−1)! +

δxi

(

(xi−x)k−2
+

(k−2)! −
∑n

j=1

nP

u�=j

( nQ

r �=j,u

(xi−xr)
)

nQ

t�=j

(xj−xt)

(xj−x)k−1
+

(k−1)!

)

)

.

(33)
In addition, noting that for n ≥ 2,

δxi
× (xi − x)n

+1Ix≤xi+δxi
= δxi

× (xi − x)n
+ + o(δxi

), (34)

we get Eq. (12) for N̂k(x).
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