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The Number of Rational Points on Singular Curves
y2 = x(x − a)2 over Finite Fields Fp

Ahmet Tekcan

Abstract—Let p ≥ 5 be a prime number and let Fp be a finite
field. In this work, we determine the number of rational points on
singular curves Ea : y2 = x(x − a)2 over Fp for some specific
values of a.

Keywords—Singular curve, elliptic curve, rational points.

I. INTRODUCTION

Mordell began his famous paper [9] with the words Math-
ematicians have been familiar with very few questions for
so long a period with so little accomplished in the way
of general results, as that of finding the rational points on
elliptic curves. The history of elliptic curves is a long one,
and exciting applications for elliptic curves continue to be
discovered. Recently, important and useful applications of
elliptic curves have been found for cryptography [4], [7], [8],
for factoring large integers [6] and for primality proving [1],
[3]. The mathematical theory of elliptic curves was also crucial
in the proof of Fermat’s Last Theorem [17].

Let q be a positive integer, Fq be a finite field and let Fq

denote the algebraic closure of Fq with char(Fq) �= 2, 3. An
elliptic curve E over Fq is defined by an equation

E : y2 = x3 + ax2 + bx,

where a, b ∈ Fq and b2(a2 − 4b) �= 0. The discriminant of E
is

Δ = 16b2(a2 − 4b).

If Δ = 0, then E is not an elliptic curve is a singular curve.
We can view an elliptic curve E as a curve in projective plane
P2, with a homogeneous equation

y2z = x3 + ax2z2 + bxz3,

and one point at infinity, namely (0, 1, 0). This point ∞ is the
point where all vertical lines meet. We denote this point by
O. Let

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax2 + bx} ∪ {O}
denote the set of rational points (x, y) on E. Then it is a sub-
group of E. The order of E(Fq), denoted by Nq = #E(Fq),
is defined as the number of the rational points on E and is
given by

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + ax2 + bx

Fq

)
,

where ( .
Fq

) denotes the Legendre symbol (for further details
on elliptic curves see [10], [11], [16]).
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II. THE NUMBER OF RATIONAL POINTS ON SINGULAR
CURVES y2 = x(x − a)2 OVER Fp.

In [2], [12], [14], we considered some specific elliptic curves
(including the number of rational points on them) over finite
fields. In this section we will determine the number of rational
points on singular curves

Ea : y2 = x(x − a)2 (1)

over finite fields Fp for primes p ≥ 5. Let

Ea(Fp) = {(x, y) ∈ Fp × Fp : y2 = x(x − a)2} ∪ O.

Before we consider our problem we give some notations which
we need them later.

Lemma 2.1: [5] Let p be an odd prime and let f(x) ∈ Z[x]
be a polynomial of degree ≥ 1. Then the number Np(f) of so-
lutions (x, y) ∈ Fp×Fp of the congruence y2 ≡ f(x)(mod p)
is

Np(f) = p + Sp(f), (2)

where

Sp(f) =
p−1∑
x=0

(
f(x)

p
). (3)

Also it is showed in [16] that for the polynomial f(x) =
(x − r)2(x − s) of degree 3 for some r, s ∈ Fp,

p−1∑
x=0

(
f(x)
Fp

) = −(
r − s

Fp
). (4)

Note that the f(x) = x(x − a)2 is a polynomial of degree
3. So by considering the point 0, we can rewrite the formula
(2) as

#Ea(Fp) = p + 1 +
p−1∑
x=0

(
x(x − a)2

p
)

= p + 1 − (
a

p
) (5)

by (3) and (4). Therefore if (a
p ) = 1, then #Ea(Fp) = p and

if (a
p ) = −1, then #Ea(Fp) = p + 2. Therefore the order of

Ea over Fp is depends on whether a is a quadratic residue or
not.

Now we can give the following two theorems which I
proved them in [13] and [15], respectively.
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Theorem 2.1: Let Fp be a finite field. Then(
1
p

)
= 1for every primes p ≥ 5

(
2
p

)
=

{
1 if p ≡ 1, 7(8)

−1 if p ≡ 3, 5(8)(
3
p

)
=

{
1 if p ≡ 1, 11(12)

−1 if p ≡ 5, 7(12)(
4
p

)
= 1 for every primes p ≥ 5

(
5
p

)
=

{
1 if p ≡ 1, 9(10)

−1 if p ≡ 3, 7(10)(
6
p

)
=

{
1 if p ≡ 1, 5, 19, 23(24)

−1 if p ≡ 7, 11, 13, 17(24)(
7
p

)
=

{
1 if p ≡ 1, 3, 9, 19, 25, 27(28)

−1 if p ≡ 5, 11, 13, 15, 17, 23(28)(
8
p

)
=

{
1 if p ≡ 1, 7, 17, 23(24)

−1 if p ≡ 5, 11, 13, 19(24)(
9
p

)
= 1 for every primes p ≥ 11

(
10
p

)
=

{
1 if p ≡ 1, 3, 9, 13, 27, 31, 37, 39(40)

−1 if p ≡ 7, 11, 17, 19, 21, 23, 29, 33, 37(40).

Theorem 2.2: Let Fp be a finite field. Then(−1
p

)
=

{
1 if p ≡ 1(4)

−1 if p ≡ 3(4)(−2
p

)
=

{
1 if p ≡ 1, 3(8)

−1 if p ≡ 5, 7(8)(−3
p

)
=

{
1 if p ≡ 1, 7(12)

−1 if p ≡ 5, 11(12)(−4
p

)
=

{
1 if p ≡ 1, 5(12)

−1 if p ≡ 7, 11(12)(−5
p

)
=

{
1 if p ≡ 1, 3, 7, 9(20)

−1 if p ≡ 11, 13, 17, 19(20)(−6
p

)
=

{
1 if p ≡ 1, 5, 7, 11, 25, 29, 31, 35(48)

−1 if p ≡ 13, 17, 19, 23, 37, 41, 43, 47(48)(−7
p

)
=

{
1 if p ≡ 1, 9, 11, 15, 23, 25(28)

−1 if p ≡ 3, 5, 13, 17, 19, 27(28)(−8
p

)
=

{
1 if p ≡ 1, 11, 17, 19, 25, 35, 41, 43(48)

−1 if p ≡ 5, 7, 13, 23, 29, 31, 37, 47(48)(−9
p

)
=

{
1 if p ≡ 1, 5, 13, 17(24)

−1 if p ≡ 7, 11, 19, 23(24)(−10
p

)
=

{
1 if p ≡ 1, 7, 9, 11, 13, 19, 23, 37(40)

−1 if p ≡ 3, 17, 21, 27, 29, 31, 33, 39(40).

Now we can consider our main problem.

Theorem 2.3: Let Ea be the singular curve defined in (1).
Then

#E1(Fp) = p for every primes p ≥ 5

#E2(Fp) =
{

p if p ≡ 1, 7(8)
p + 2 if p ≡ 3, 5(8)

#E3(Fp) =
{

p if p ≡ 1, 11(12)
p + 2 if p ≡ 5, 7(12)

#E4(Fp) = p for every primes p ≥ 5

#E5(Fp) =
{

p if p ≡ 1, 9(10)
p + 2 if p ≡ 3, 7(10)

#E6(Fp) =
{

p if p ≡ 1, 5, 19, 23(24)
p + 2 if p ≡ 7, 11, 13, 17(24)

#E7(Fp) =
{

p if p ≡ 1, 3, 9, 19, 25, 27(28)
p + 2 if p ≡ 5, 11, 13, 15, 17, 23(28)

#E8(Fp) =
{

p if p ≡ 1, 7, 17, 23(24)
p + 2 if p ≡ 5, 11, 13, 19(24)

#E9(Fp) = p for every primes p ≥ 11

#E10(Fp) =
{

p if p ≡ 1, 3, 9, 13, 27, 31, 37, 39(40)
p + 2 if p ≡ 7, 11, 17, 19, 21, 23, 29, 33, 37(40)

#E−1(Fp) =
{

p if p ≡ 1(4)
p + 2 if p ≡ 3(4)

#E−2(Fp) =
{

p if p ≡ 1, 3(8)
p + 2 if p ≡ 5, 7(8)

#E−3(Fp) =
{

p if p ≡ 1, 7(12)
p + 2 if p ≡ 5, 11(12)

#E−4(Fp) =
{

p if p ≡ 1, 5(12)
p + 2 if p ≡ 7, 11(12)

#E−5(Fp) =
{

p if p ≡ 1, 3, 7, 9(20)
p + 2 if p ≡ 11, 13, 17, 19(20)

#E−6(Fp) =
{

p if p ≡ 1, 5, 7, 11, 25, 29, 31, 35(48)
p + 2 if p ≡ 13, 17, 19, 23, 37, 41, 43, 47(48)

#E−7(Fp) =
{

p if p ≡ 1, 9, 11, 15, 23, 25(28)
p + 2 if p ≡ 3, 5, 13, 17, 19, 27(28)

#E−8(Fp) =
{

p if p ≡ 1, 11, 17, 19, 25, 35, 41, 43(48)
p + 2 if p ≡ 5, 7, 13, 23, 29, 31, 37, 47(48)

#E−9(Fp) =
{

p if p ≡ 1, 5, 13, 17(24)
p + 2 if p ≡ 7, 11, 19, 23(24)

#E−10(Fp) =
{

p if p ≡ 1, 7, 9, 11, 13, 19, 23, 37(40)
p + 2 if p ≡ 3, 17, 21, 27, 29, 31, 33, 39(40).
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Proof: Applying Theorems 2.1 and 2.2 the result is clear.

Now we consider the sum of x− and y−coordinates of all
rational points (x, y) on Ea over Fp. Let [x] and [y] denote the
x−and y−coordinates of the points (x, y) on Ea, respectively.
Then we have the following the results.

Theorem 2.4: The sum of [x] on Ea is

∑
[x]

Ea(Fp) =

⎧⎪⎨
⎪⎩

p3−p−12a
12 if (a

p ) = 1

p3−p+12a
12 if (a

p ) = −1.

Proof: Let Up = {1, 2, · · · , p−1} be the set of units in Fp.
Then then taking squares of elements in Up, we would obtain
the set of quadratic residues Qp = {12, 22, · · · , (p−1

2 )2}. Then
the sum of all elements in Qp hence∑

x∈Qp

x =
p3 − p

24
.

Now let (a
p ) = 1. Then a is a quadratic residue. But for

this values of a, there is one rational point (a, 0) on Ea. Let
H = Qp − {a}. Then

∑
x∈H

x =

⎛
⎝ ∑

x∈Qp

x

⎞
⎠ − a

=
p3 − p

24
− a

=
p3 − p − 24a

24
.

We know that every element x of H makes x(x − a)2 is a
square. Let x(x−a)2 ≡ t2(mod p). Then y2 ≡ t2(mod p). So
there are two rational points (x, t) and (x, p − t) on Ea. The
sum of x−coordinates of these two points is 2x, that is, for
every x ∈ H , the sum of x−coordinates of (x, t) and (x, p−t)
is 2x. So the sum of x−coordinates of all points on Ea is

2
∑
x∈H

x.

Further we said above that the point (a, 0) is also on Ea.
Consequently

∑
[x]

Ea(Fp) = 2

(∑
x∈H

x

)
+ a =

p3 − p − 12a

12
.

Let (a
p ) = −1. Then a is not a quadratic residue. But every

element x of Qp makes x(x− a)2 a square. So there are two
rational points on Ea and hence the sum of x−coordinates of
these two points is 2x. Further (a, 0) is also a rational point
on Ea. Consequently

∑
[x]

Ea(Fp) = 2

⎛
⎝ ∑

x∈Qp

x

⎞
⎠ + a =

p3 − p + 12a

12
.

Theorem 2.5: The sum of [y] on Ea is

∑
[y]

Ea(Fp) =

⎧⎪⎨
⎪⎩

p2−3p
2 if (a

p ) = 1

p2−p
2 if (a

p ) = −1.

Proof: Let (a
p ) = 1. Then a is a quadratic residue but

again for this value of a, there is one rational point (a, 0) on
Ea. Also every element x of Qp makes x(x − a)2 a square.
Let x(x − a)2 ≡ t2(mod p). Then

y2 ≡ t2(mod p) ⇔ y ≡ ±t(mod p).

So there are two points (x, t) and (x, p − t) on Ea. The sum
of y−coordinates of these two points is p. We know that there
are p−1

2 − 1 = p−3
2 points x such that x(x − a)2 is a square.

So the sum of y−coordinates of all points (x, y) on Ea is

p(
p − 3

2
) =

p2 − 3p

2
.

Now let (a
p ) = −1. Then a is not a quadratic residue. But

every element x of Qp makes x(x− a)2 a square. Let x(x−
a)2 ≡ t2(mod p). Then

y2 ≡ t2(mod p) ⇔ y ≡ ±t(mod p).

So there are two points (x, t) and (x, p − t) on Ea. The sum
of y−coordinates of these two points is p. We know that there
are p−1

2 points x in Qp such that x(x − a)2 is a square. So
the sum of y−coordinates of all points (x, y) on Ea is

p(
p − 1

2
) =

p2 − p

2
.
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