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Abstract—Fast delay estimation methods, as opposed to 
simulation techniques, are needed for incremental performance 
driven layout synthesis. On-chip inductive effects are becoming 
predominant in deep submicron interconnects due to increasing clock 
speed and circuit complexity. Inductance causes noise in signal 
waveforms, which can adversely affect the performance of the circuit 
and signal integrity. Several approaches have been put forward which 
consider the inductance for on-chip interconnect modelling. But for 
even much higher frequency, of the order of few GHz, the shunt 
dielectric lossy component has become comparable to that of other 
electrical parameters for high speed VLSI design. In order to cope up 
with this effect, on-chip interconnect has to be modelled as 
distributed RLCG line. Elmore delay based methods, although 
efficient, cannot accurately estimate the delay for RLCG interconnect 
line. In this paper, an accurate analytical delay model has been 
derived, based on first and second moments of RLCG 
interconnection lines. The proposed model considers both the effect 
of inductance and conductance matrices. We have performed the 
simulation in 0.18μm technology node and an error of as low as less 
as 5% has been achieved with the proposed model when compared to 
SPICE. The importance of the conductance matrices in interconnect 
modelling has also been discussed and it is shown that if G is 
neglected for interconnect line modelling, then it will result an delay 
error of as high as 6% when compared to SPICE. 
 

Keywords—Delay Modelling; On-Chip Interconnect; RLCG 
Interconnect; Ramp Input; Damping; VLSI  

I. INTRODUCTION 
ITH the development of ultra large scale integrated 
circuit (IC) process, interconnect delay is playing the 

dominant role as compared to the gate delay. Simple but 
effective analytical delay models of interconnects are useful 
for IC designers to avoid the timing issue problem and to 
optimize the design, such as minimizing delay [1-5]. Hence, it 
is necessary to build accurate and effective delay estimation 
models for interconnects. 
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Elmore delay model [1], which is simple in form and easy to 
be used, has been widely adopted to estimate the interconnect 
delays in the performance-driven synthesis and layout of very 
large-scale integrated (VLSI) routing topologies. 

It is actually the first order estimation of the interconnect 
delay with an ideal step input signal, i.e., assuming rise time to 
be zero. Depending on the frequency used for circuit 
operation, topology of the interconnect structure, and the rise 
time of the input signal, the on-chip interconnect may be 
modelled either as lumped, distributed or as the full wave 
models. At relatively lower frequency, interconnect may be 
modelled as distributed RC segments [12-15]. In order to 
capture the high frequency effect such as, undershoot, 
overshoot, ringing, the interconnect is modelled as distributed 
RLC network [16-18] and the accuracy in performance 
estimation of interconnect eventually got improved.  But, 
unfortunately, these RC or RLC models lack in accuracy as 
the dielectric loss G can not be ignored in many practical 
situations especially in the very high frequency domain used 
in the present VLSI design [19]. 

With the increase in speed of high performance VLSI 
circuits, inductance and conductance effect of interconnects 
are becoming more and more important and can no longer be 
neglected. Under this circumstance, the Elmore model is 
inadequate since this model takes only the resistance and 
capacitance effects into account. It is necessary to use a 
second order model, which includes the effect of inductance 
and conductance. There are several approaches proposed to 
estimate the on-chip interconnect performance characteristic; 
where the interconnect is modelled as distributed RLCG 
segment. In [20], the interconnect line is modelled as 
distributed RLCG elements and the frequency response is 
calculated and it is shown that RLCG consideration is suitable 
up to 110 GHz frequency of operation. Hua et. al. [21] have 
proposed an interconnect RLCG state space models in time 
domain with computation complexity of O(N), where N is the 
total system order. An analytical delay model for distributed 
on-chip RLCG interconnects has been proposed in [6] taking 
step function as input. Another delay model proposed in [7] 
calculates delay of distributed RLCG interconnects by taking 
into consideration the coupling effect and by using difference 
model approach is put forward. In [8] also, the delay is 
calculated for on-chip global RLCG interconnect using step 
input. However, for all these models, a precondition exists that 
the input signal is assumed to be an ideal step signal.  But that 
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is not the case in practice. There must be a definite rise time 
slope, i.e., the input must be a ramp signal with a predefined 
rise time. In a study by Hasegawa et.al. [4], the concept of 
delay models for interconnects under ramp input is 
investigated. However, the paper offers only a brief discussion 
on the over-damped cases irrespective of the under damped 
and critical damping cases. In [9], unified delay analysis for 
on-chip RLCG interconnects for ramp input using fourth order 
transfer function is presented. But this model suffers from 
accuracy point of view and no information regarding damping 
is provided. In this paper, analytical delay models for RLCG 
interconnects under ramp input are presented for different 
damping situations, i.e., over damped, under damped and 
critical damped cases. This paper is summarized as follows: 
Section 2 presents the delay model for on-chip interconnects 
for step input excitation. Section 3 describes the proposed 
delay model for ramp input. The different delay metrics have 
been derived for different pole conditions. Section 4 shows 
the simulation result. Finally Section 5 concludes the paper. 

II. DELAY MODEL FOR INTERCONNECTS UNDER STEP INPUT 
In this section, a second order analytical delay model for 

interconnects under step input has been proposed. In the 
transform domain, output response can be obtained 
through )()()( sHsVsV inout = ; where )(sH  is the transfer 
function of the system. By using inverse Laplace transform, 
the output response in time domain can also be obtained. With 
the time domain output response Vout(t),  one can easily obtain 
the delay under a certain output threshold. 

Transfer function of the interconnect line of Figure 1 can be 
derived as,  
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Where, )sinh(),cosh( dBdA γγ == . 
And ( )( )( )scgslr ++=γ  is the transfer constant, 
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 is the characteristics impedance, Zt, Zs are the 

load impedance and the source impedance, respectively and 
are given as, 
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Where, r, l, c, g represents resistance, inductance, 

capacitance and conductance per unit length of the 
interconnect, respectively and d is the length of the 
interconnect. By expanding cosh and sinh as infinite power 
series and considering the terms up to the coefficient of s2 in 
the denominator, the truncated transfer function can be 
obtained as follows: 
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(a) 

 
(b) 

Fig. 1 (a) Two-Port Model of a Distributed RLCG Line with 
Resistive and Inductive Source Impedance and Capacitive Load 

Impedance; (b) Section of a Distributed RLCG Interconnect Line 
 

Where the coefficients b0, b1, b2, are, respectively, 
calculated as,  
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When the input is an ideal step signal with the amplitude 
V0, 

2
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Vout (t) can be obtained by inverse Laplace transform. 
Assuming Vout(t) =0.9V0, we can get the 90% delay t0.9. 

III. INTERCONNECT DELAY MODEL FOR RAMP INPUT 
In practice, the input signal to be transmitted through the 

interconnect lines can never be ideal. Instead, the input signal 
must have a finite rise time. Thus, using the delay model, 
which is obtained with the ideal step signal as the stimulus, 
will inevitably lead to a calculation error. In this section, a 
detailed analysis of the delay modelling with ramp input has 
been discussed for both real and complex pole conditions. 

The finite rising ramp input shown in Figure 2 can be 
expressed in the time domain as [10], 

)()()( ___ rinifinfinf ttVtVtV −−=              (7)  
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Where U (t) denotes the step function. The finite ramp input 
in the transform domain is,        
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(b) 

Fig. 2 Ramp Input function (a) Finite Ramp with Rise Time tr; (b) 
Finite Ramp Decomposed into Two Shifted Infinite Ramps 

 
In the transform domain, the output response is, 
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Applying Elmore’s delay definition for step input yields an 
analytical delay metric tAD for ramp input [10], i.e. 

ED
rr

AD ttabtt +=−+=
22 11

             (11) 

Where, a1, b1 are the co-efficient of 
2s in the numerator and 

denominator of the transfer function, respectively, and tED is 
the Elmore delay for the step input, which is the first moment 
of the transfer function. Note that tED should correspond to the 
different output threshold; Elmore delay corresponds to t0.632, 
i.e., delay with the output threshold of 0.632V0 [11] while 
t0.9=2.3tED, t0.5=0.693tED . 

In the following sub-section, the two-pole methodology for 
interconnect response has been discussed. 

A.  Real Poles 
In the transform domain, response of the infinite ramp is,  
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Where α , β are the poles of the transfer function. The 
corresponding output response in time domain is, 
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Consideringα , β  < 0 and |||| αβ >  then 
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decreases more rapidly compared to 
( )
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βαα −2

1 . Hence the 

two pole response can be approximated as,  
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Then we can get the response of finite ramp as, 
)()()( ___ routifoutifoutf ttVtVtV −−=  

( )
( )( ) ( )

( )( ) )(111
22

0

0 tueeeet
bt

V
rr tttttt

r
r

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+−

−
+= −− ββαα

αβββαα
(18) 

( )
( )( ) )(11

2
0

0 tueet
bt

V
rttt

r
r

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+≅ −αα

βαα
        (19) 

Assuming that the delay corresponds to τ when the output 
reaches thv ,i.e., )1()( 0_ == VvV thoutf τ , then, 
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This situation can be compared to over damped condition 
because 20

2
1 4 bbb > , and the output response shows increasing 

oscillating pattern 

B. Complex Poles 
In case of complex poles, we assume that poles of the 

transfer function are jqp ±−=βα , . Response of infinite 
ramp in the transform domain is thus, 
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Taking inverse Laplace transform, the time domain 
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response can be computed as, 
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Then we can get the finite response as follows, 
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Assume that the delay corresponds to τ when the output 

reaches )1( 0 =Vvth , i.e., 
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Equation (28) is a trans-dental equation that can be 
computed by recursively solving for time. One way to solve 
the recursion is to approximate the time variable in the sin 
term by equivalent Elmore delay under ramp input, i.e., 
substitute rthAD tvt ='  for time t. 

Therefore, 
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If d1>d2, then substituting rthAD tvt =
'

for the time variable 
in the exponential term and expand the sin function as a 
Taylor series and considering only the first term, we get, 
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This situation can be compared to under damped condition 
because 20

2
1 4 bbb < , and the output response shows 

decreasing pattern with time. 

C. Double Poles 
Assume that the poles of the transfer function are α and it is 

repeated. Then the response of the circuit to infinite ramp 
input will be, 
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The time domain response will be of the form given in (35). 
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The response of finite ramp in transform domain is, 
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Assume that the delay corresponds to τ when the output 
reaches vth. 

So, 
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Here 10 =V , is considered as unit step signal has been 
applied for simplicity. 

It is again a trans-dental equation. For simplification, we 

substitute  ατetAD

'

 for  αττe  and τ can be calculated as, 
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This situation can be compared to critically damped 
condition because 20

2
1 4 bbb = , and the output response 

remains constant. 

IV. SIMULATION RESULTS 

A. Real Poles 
Assume that the length of the interconnect is d=2000 μm; 

rising time of the input signal is tr=100 ps; interconnect 
parameters are, r =0.015 Ω/μm; l=0.246 pH/μm; g =16.65 
μS/μm; and c=0.176 pF/μm. The parameter values are taken 
so to satisfy the condition 20

2
1 4 bbb >  which is represented as 

over damped condition because 20
2

1 4 bbb > . For 90% delay 
t0.9, the delay estimations using the proposed analytical model 
[Eq. (20)] is done and the average error is within 5% 
compared to SPICE simulated delay. In Table 1, 90% delay 
and Elmore equivalent delay calculation for real poles are 
estimated and are compared with SPICE result for different 
values of  Rs, Ls, Ct . 

B. Complex Poles 
We consider that the length of the interconnect is d=2000 

μm; rising time of the input signal is tr =500 ps; interconnect 
parameters are r =0.015 Ω/μm; l=0.246 pH/μm; g =16.65 
μS/μm; and c=0.176 pF/μm. Here the parameter values are 
taken so to satisfy the condition 20

2
1 4 bbb <  which is 

represented as under damped condition because 20
2

1 4 bbb < . 
For 90% delay t0.9, the delay estimations using the proposed 
analytical model [Eq. (31)] is done and the average error is 
within 5% compared to SPICE simulated delay. In Table 2, 
90% delay and Elmore equivalent delay calculation for 
complex poles are estimated and are compared with SPICE 
result for different values of  Rs, Ls, Ct .  
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TABLE I 

COMPARISON BETWEEN ELMORE AND THE PROPOSED DELAY WITH SPICE RESULT FOR REAL POLES 
Source Load Delay Model 

Rs(Ω) Ls(pH) Ct(pF) 

SPICE delay 
(90%)(ps) 

Equivalent Elmore model 
(90%) (ps) 

Error 
(%) 

Proposed model  
(90%) (ps) 

Error 
(%) 

50 2.46 0.176 176.79 162.13 8.29 168.18 4.87 
100 2.46 0.176 180.68 167.94 7.05 173.99 3.70 
1000 2.46 0.176 387.51 358.76 7.42 362.36 6.49 

25 2.46 1.760 183.59 168.87 8.02 175.49 4.41 
100 2.46 1.760 187.43 172.42 8.01 177.63 5.23 
1000 2.46 1.760 751.54 694.65 7.57 715.54 4.79 

 
TABLE II 

COMPARISON BETWEEN ELMORE AND THE PROPOSED DELAY WITH SPICE RESULT FOR COMPLEX POLES 
Source Load Delay Model 

Rs (Ω) Ls (pH) Ct (pF) 

SPICE delay 
(90%) (ps) Equivalent Elmore model 

(90%) (ps) 
Error 
(%) 

Proposed model (90%) 
(ps) 

Error 
(%) 

10 0.0246 0.0176 770.7 547.74 28.93 730.78 5.18 
10 0.0246 0.176 775.7 449.83 42.01 742.27 4.31 
20 0.0246 0.176 778.4 476.46 38.79 733.81 5.73 
10 2.46 0.0176 771.1 462.27 40.05 730.46 5.27 
20 2.46 0.0176 773.3 560.10 27.57 738.73 4.47 
10 2.46 0.176 776.0 481.04 38.01 743.33 4.21 
20 2.46 0.176 801.1 476.57 40.51 766.73 4.29 
10 24.6 0.0176 770.4 455.54 40.87 742.05 3.68 
20 24.6 0.0176 773.1 460.07 40.49 736.61 4.72 
10 24.6 0.176     775.9 485.63 37.41 735.47 5.21 
20 24.6 0.176 779.0 476.36 38.85 744.65 4.41 

 
TABLE III 

COMPARISON BETWEEN SPICE AND THE PROPOSED DELAY FOR REAL POLES WHEN 0=G  
Source Load 

Rs(Ω) Ls(pH) Ct(pF) 
SPICE delay 
(90%) (ps) 

Proposed model (90%) 
(ps) 

Error 
(%) 

50 2.46 0.176 27.24 26.28 3.51 
100 2.46 0.176 31.11 29.57 4.95 

1000 2.46 0.176 57.21 54.29 5.10 
25 2.46 1.760 32.46 30.92 4.75 
100 2.46 1.760 34.92 33.10 5.21 

1000 2.46 1.760 94.23 90.54 3.91 
 

TABLE IV 
COMPARISON BETWEEN SPICE AND THE PROPOSED DELAY FOR COMPLEX POLES WHEN 0=G  

Source Load 
Rs (Ω) Ls (pH) Ct (pF) 

SPICE delay 
(90%) (ps) 

Proposed model 
(90%) (ps) 

Error 
(%) 

10 0.0246 0.0176 111.41 106.77 4.16 
10 0.0246 0.176 127.57 120.78 5.32 
20 0.0246 0.176 131.49 125.29 4.71 
10 2.46 0.0176 113.20 108.37 4.27 
20 2.46 0.0176 116.01 109.73 5.41 
10 2.46 0.176 129.75 125.58 3.21 
20 2.46 0.176 156.81 149.64 4.57 
10 24.6 0.0176 112.11 107.31 4.28 
20 24.6 0.0176 115.32 109.92 4.68 
10 24.6 0.176 128.12 123.06 3.95 
20 24.6 0.176 153.91 146.66 4.71 
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C. For G=0 
In above discussion delay has been estimated for 0≠G . In 

this session 90% delay for real and complex poles are 
calculated for 0=G  and are compared with SPICE simulation 
delay. The average error is as high as 6% when compared to 
SPICE delay. In Table 3 and 4, delay estimation for 0=G is 
given for real and complex poles, respectively. From Table 3 
and Table 4 it is evident that for accurate modelling of on-chip 
interconnects, the conductance metrics have to be considered.  

The variations of SPICE delay and proposed delay with 
different values of source resistance Rs and Load capacitance 
Ct  for real poles is presented in Fig-3. Here SPICE delay and 
Proposed delay for real poles are compared for Ct=0.176 pF 
and 1.76 pF. It is evident from the graph that with increasing 
Rs and Ct, delay also shows increasing pattern and proposed 
model delay closely follows SPICE delay. 

 
Fig. 3 Rs vs. SPICE and Proposed delay for different values of Ct 

for Real Poles 
 

The variations of SPICE delay and proposed delay with 
different values of source resistance Rs and Load capacitance 
Ct  for complex poles are presented in Fig-4. Here SPICE 
delay and Proposed delay for complex poles are compared for 
Ct=0.0176 pF and 0.176 pF. It is evident from the graph that 
with increasing Rs and Ct, delay also shows increasing pattern 
and proposed model delay closely follows SPICE delay. 

The variations of SPICE delay and proposed delay with 
different values of source resistance Rs and source inductance 
Ls   for complex poles is presented in Fig-5. Here SPICE delay 
and Proposed delay for complex poles are compared for 
Ls=0.0246 pH and 24.6 pH.  It is evident from the graph that 
with increasing Rs and Ls, delay also shows increasing pattern 
and proposed model delay closely follows SPICE delay. 

 

 
Fig. 4 Rs vs. SPICE and Proposed delay for different values of Ct  

for Complex Poles 
 

 
Fig. 5 Rs vs. SPICE and Proposed delay for different values of Ls 

for Complex Poles 

V. CONCLUSION 
In this paper analytical delay models for RLCG 

interconnects under ramp input are presented which considers 
the effect of inductance as well as conductance matrices. The 
resulting delay estimations are significantly more accurate 
because ramp signal is given as input rather than step signal. 
Under different situations, i.e. over damped, under damped 
and critical damped cases, the delay estimation using the 
proposed delay model are within 5% of error as compared to 
SPICE simulated delay. The derived delay expression along 
with the analysis can serve as a convenient tool for delay 
estimation without much computation during design.  
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