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Abstract—Fair share objective has been included into the goal-

oriented parallel computer job scheduling policy recently. However, 
the previous work only presented the overall scheduling performance. 
Thus, the per-user performance of the policy is still lacking. In this 
work, the details of per-user fair share performance under the 
Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair 
share priority backfill policy namely RelShare(1d) is also studied. 
The performance of all policies is collected using an event-driven 
simulator with three real job traces as input. The experimental results 
show that the high demand users are usually benefited under most 
policies because their jobs are large or they have a lot of jobs. In the 
large job case, one job executed may result in over-share during that 
period. In the other case, the jobs may be backfilled for 
performances. However, the users with a mixture of jobs may suffer 
because if the smaller jobs are executing the priority of the remaining 
jobs from the same user will be lower. Further analysis does not show 
any significant impact of users with a lot of jobs or users with a large 
runtime approximation error. 
 

Keywords—deviation, fair share, discrepancy search, priority 
scheduling.  

I. INTRODUCTION 

AIR share objective has been included in the goal-oriented 
parallel computer job scheduling policy called Tradeoff-

fs(Tx:avgX), recently [1]. The impact of user request runtime 
which is known to be inaccurate [2] was presented in [3]. The 
policy was evaluated on several workloads with various 
characteristics in [4]. In all these works, the regular scheduling 
performances widely used in the field [5,6,7] such as average 
wait time, 99th-percentile wait time, maximum wait time and 
average slowdown were presented. In addition, the fair share 
measures namely dev (i.e., deviation) was proposed to 
measure the differences between the cumulated actual usage 
and the cumulated entitled share of each user over a given fair 
share window. However, the results presented in all previous 
works focused on overall performances. In this work, the 
details of per-user fair share performance under the Tradeoff-
fs(Tx:avgX) policy will be further evaluated. 
 The remaining of this paper is organized as follows. Parallel 
computer job scheduling problems and the current solutions 
are described in Section 2. In Section 3, goal-oriented parallel 
computer jobs scheduling policies are reviewed. In Section IV, 
the experimental setting in this work including workloads, 
policies and performance measures are described. In Section 
V, the experimental results and discussions are presented. 
Finally, the conclusions are given in Section VI. 
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II. PARALLEL COMPUTER JOB SCHEDULING 

Parallel computer job scheduling problem is a problem of 
scheduling a job on a set of available computational nodes so 
that each job will eventually be executed or cancelled by its 
owner. Typically, the user must supply some job information 
such as the number of requested computational nodes and the 
estimated runtime of the jobs. The scheduler uses the job 
information to make a scheduling decision when any 
computational node becomes available. That is, when a job 
arrives at the system or when a job leaves the system. In this 
work, any of these two events will be called a ‘scheduling 
decision point’.   

To better explain the idea of the parallel computer job 
scheduling problem, Figure 1 simulates a scheduling decision 
point where the x-axis represented the time while the y-axis 
represented the number of computational nodes. At the current 
time (t1), the system has two running jobs which are job no. 1 
and job no. 2. And, there is one waiting job which is job no.3. 
If there is no arriving job during t1 and t2, the scheduler will be 
activated at t2 because the job no.1 will be finished. Notice 
that, the job runtime information at the current time is not 
accurate because the job owner always gives an overestimated 
runtime. Thus, the job no.2 may be finished before job no.1 on 
the real system. Furthermore, the jobs can arrive at any time 
which is known as an on-line setting. That is, the scheduler 
will not know when the job will arrive making it difficult to 
make a working schedule offline. Therefore, this inaccurate 
information and on-line setting environment enhance the 
challenge of solving any parallel computer job scheduling 
problem.   

Typically, the production parallel computer job scheduler is 
either a queue-based scheme [8,9,10] where each job is 
assigned to a waiting job queue by its characteristic or a job-
based scheme [11,12,13], where all jobs are prioritized based 
on a weighted function of a set of pre-defined job measures. 
The difficulties of these schemes are the low-level parameter 
tuning process. For example for the job-based scheme, the 
system administrator must define what job measure to use in 
the weighted function in order to achieve a desired 
performance. The parameters sometime are not directly related 
to the scheduling performances. For example, to prevent a 
starvation problem the system administrator may use wait time 
of each job as the job measure to indicate the starvation 
problem. That is, the job should not wait too long otherwise 
the system may be in a starvation state. As a result, the system 
administrator must fine tune the parameters every time that 
something is changed such as a change in objectives, a change 
in workload characteristics, etc. 
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Fig. 1 Simplified parallel computer job scheduling problem 

III.  GOAL-ORIENTED PARALLEL COMPUTER JOB SCHEDULING 

To reduce the task of tuning the low-level scheduling 
parameters, the goal-oriented parallel computer job scheduling 
policy (Tradeoff(Tx:avgX) was proposed [14, 15]. The policy 
has been shown to achieve good scheduling performances 
under conflicting objectives. The policy also achieves good 
performances under both single partition systems and multiple 
partition systems [16]. Recently, the fair share objective was 
included in the goal-oriented parallel computer job scheduling 
policy [1]. The newly designed goal-oriented policy also 
achieves good scheduling performances and fair share 
performances under both accurate and inaccurate runtime and 
under various workload characteristics.  

The main idea of the goal-oriented parallel computer job 
scheduling policy is to replace the task of tuning low-level 
scheduling parameters for performances using a search engine. 
By giving a set of objectives, the search engine traverses the 
space of solutions to find a ‘good’ solution within a certain 
time limit. Since the search space can be very large, the search 
engine must quickly find a ‘good’ solution and quickly discard 
a ‘bad’ one. To do so, a discrepancy based search technique, 
namely depth bounded discrepancy based search or DDS [17], 
is selected.  

Under the goal-oriented parallel computer job scheduling 
policy, all waiting jobs at the current decision point are 
organized into a tree. Figure 2 shows a partial tree of five 
waiting jobs (i.e., job no. 1, job no. 2, job no. 3, job no. 4, and 
job no. 5) according to their arriving order. From depth 1 to 
the leaf node, only the left most branches are shown. At each 
level the jobs are ordered from left to right using a branching 
heuristic. In the figure, the jobs are ordered according to the 
first-come-first-serve or FCFS branching heuristic.  

At each decision point, the tree of waiting jobs is organized. 
The search engine, then, walks on this tree to find a ‘good’ 
solution. The search engine starts from the first left node at the 
first left node at the first depth and find the best available time 
slot for the job to be scheduled. The first job is then assigned 
that time slot. The search engine follows the left most path 
until it reaches the left node.  

That is, one complete solution is found. The score of this 
first solution is, then, calculated and saved as the best solution 
found so far. The performance impacts of various scoring 
modules are presented in [18].  The next path discovered will 
be according to the DDS algorithm which is the path with the 
discrepancy at the first depth. Once the next solution is found, 
its score will be calculated and compared with the best score 
so far. If the new solution is better, the new solution is kept as 
the best solution.  

To illustrate the DDS algorithm, Figure 3 shows the order 
of paths discovered on a tree of three waiting jobs. The first 
path discovered is the heuristic path which is the left most 
path. This path follows the branching heuristic which is a 
reason to be called the ‘heuristic path’. The next path (denoted 
no. 2 in the figure) is the left-most path of the first discrepancy 
node at the first depth. The next path (denoted no. 3 in the 
figure) is the next path of the next discrepancy node at the first 
depth. After the first three paths are discovered, the search 
moves to the discrepancy at the next level (i.e., depth 2). Path 
no. 4 is discovered next because it is the left-most path of the 
discrepancy paths at depth 2. Next, the search will discover 
path no.5 and path no.6.     

 

 
 

Fig. 2 A partial tree of five waiting jobs 
 

 
Fig. 3 the DDS order of paths discovered on a tree 

  
As can be seen that the job on the left node will be 

discovered before the job on the right node, the order of jobs 
has a significant impact on the search engine.  
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Tradeoff-fs(Tx:avgX) policy includes fair share objective 
by ordering jobs according to the fair share measure. As a 
result, the policy can achieve both good scheduling 
performances and good fair share performances.  

Furthermore, the very first job considered by the scheduler 
can have a significant impact on the remaining jobs because it 
will limit the available space on the system for the remaining 
jobs. Thus, discovering jobs according to DDS can help 
reduce this impact because the discrepancy at the first depth 
will be searched first before the discrepancy lower level of the 
tree. As a result, each job will have a chance to be the first job 
considered. If doing so can result in a better solution, that 
solution will be selected as the best solution found so far.  

With the separation between the objectives and the search 
engine, the goal-oriented parallel computer job scheduling 
policy can reduce the administrator bundle of parameter 
tuning tasks for performances.    

IV.  EXPERIMENTAL SETTING AND MEASURES 

 The per-user fair share measures and scheduling 
performances of each user under the goal-oriented parallel 
computer job scheduling policy namely Tradeoff-fs(Tx:avgX) 
is evaluated in details. Another policy to be evaluated against 
the goal-oriented policy is the RelShare(1d) which will be 
described next. The results are collected from an event-driven 
simulator with real job traces from three production parallel 
computer centers as input. The workload information is 
presented in the next subsection.   
 To be realistic, a warm up and a cool down periods are 
included in the simulation. The simulation is done one month 
at a time with a one-week warm up (i.e., jobs from the 
previous month) and a cool down period (i.e., jobs from the 
next month continue to arrive). The experiments are conducted 
under both accurate and inaccurate runtime situations. The 
per-user fair share measures are evaluated against the accuracy 
of the user runtime approximation and the amount of resources 
requested by the user. These topics are still lacking in the 
previous work [1] because the previous work only focused on 
comparing the overall performances of the Tradeoff-
fs(Tx:avgX) against other policies. Thus, the performance 
analysis aimed at demonstrating fairness of the scheduler on 
the users with high demand. These additional factors are 
evaluated, in this work, to further understand the strength and 
weakness of the fair share goal-oriented parallel computer job 
scheduling policies.  

A.  Workloads  

There are three real job traces in this study. The first job 
trace is a ten-monthly workload that ran on an Intel Itanium 
Linux cluster (IA-64) at the National Center for 
Supercomputing Applications at the University of Illinois at 
Urbana-Champaign during June 2003 to March 2004. The 
second job trace is a ten-monthly KTH workload [19]. The last 
job trace is a twelve-monthly SDSC workload [19]. Table 1 
shows the workload characteristic in each month of each job 
trace. The information presented includes total demand (Proc. 
demand), number of users (#users), number of jobs (#jobs), 
average job size (i.e., NT:  nodes-hour, N: computational 

node, T: runtime in hours), and per-user information of 
average number of jobs and average demand in node-hours. 

 
TABLE I 

INFORMATION OF EACH JOB TRACE 
IA-64 workload 

    avg. 
job size 

(node-hours) 

avg. per user 
 

Month 
Proc. 

demand 
 

#users 
 

#jobs 
 

#jobs 
 

demand 
6/03 82% 73 2191 34.5 30.0 1034.7 
7/03 89% 68 1400 60.6 20.6 1247.4 
8/03 79% 73 3221 23.4 44.1 1031.6 
9/03 72% 74 3057 21.7 41.3 895.5 
10/03 71% 75 4149 16.3 55.3 899.5 
11/03 73% 81 3443 19.5 42.5 827.1 
12/03 74% 61 3521 20.1 57.7 1159.3 
1/04 73% 53 3156 22.1 59.5 1313.6 
2/04 74% 73 3969 16.6 54.4 900.3 
3/04 75% 70 3466 20.6 49.5   1018.0 

KTH workload 
    avg. 

job size 
(node-hours) 

avg. per user 
 

Month 
Proc. 

demand 
 

#users 
 

#jobs 
 

#jobs 
 

demand 
10/96 69% 68 2404 21.4 34.5 755.44 
11/96 69% 66 1990 25.2 33.5 761.07 
12/96 65% 69 2299 21.3 35.0 709.38 
1/97 76% 65 2939 19.3 33.0 870.7 
2/97 76% 75 2916 17.7 38.0 688.01 
3/97 74% 69 2081 26.8 35.0 807.49 
4/97 70% 83 2860 17.7 42.0 610.53 
5/97 68% 80 4080 12.5 40.5 637.98 
6/97 72% 58 2697 19.5 29.5 905.29 
7/97 62% 59 2182 21.4 30.0 790.91 

SDSC workload 
    avg. 

job size 
(node-hours) 

avg. per user 
 

Month 
Proc. 

demand 
 

#users 
 

#jobs 
 

#jobs 
 

Demand 
6/00 75% 120 7043 89.5 60.5 5251.6 
7/00 72% 117 5607 110.9 59.0 5313.8 
8/00 77% 141 5433 122.9 71.0 4736.1 
9/00 60% 118 5172 97.8 59.5 4285.2 
10/00 68% 119 4234 139.4 60.0 4959.4 
11/00 70% 115 4132 141.5 58.0 5085.7 
12/00 62% 107 3187 167.8 54.0 4998.9 
1/01 62% 113 5963 90.5 57.0 4775.8 
2/01 72% 128 6912 81.0 64.5 4372.2 
3/01 70% 143 6206 97.5 72.0 4229.8 
4/01 76% 132 7167 88.1 66.5 4783.4 
5/01 83% 151 8428 81.8 76.0 4563.4 

B. Policies  

The Tradeoff-fs(Tx:avgX) will be evaluated against a basic 
priority backfill policy namely RelShare(1d) as proposed in 
[20]. RelShare(1d) policy considers jobs for scheduling 
according to the fair share measure of the job’s owner. The 
backfill technique [21] is added to allow some out of priority 
order scheduling results. That is, some low priority jobs can be 
scheduled to execute on available nodes if its executions do 
not affect the executions or scheduled executions of higher 
priority jobs. The fair share priority is the ratio of the entitled 
share to the actual cumulated usage dynamically computed 
over a one-day window. One-day window is a typical fair 
share window value on several production schedulers 
[8,9,12,13]. Goal-oriented parallel computer job scheduling 
policies (Tradeoff-fs(Tw:avgX)) is described in Section III.  
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That is, Tradeoff-fs(Tw:avgX) is covered a fair share 
objective by using the fair share priority as the branching 
heuristic when organized the search tree. In addition to the fair 
share objective, the goal-oriented policies considered two 
objectives—preventing starvation and minimizing average 
measures. 

C. Performance Measures  

Both overall performances and per-user performances are 
considered in this study. The focused performance is the per-
user fair share measure namely deviation or dev for short [20] 
which calculates the differences between the entitled share and 
the actual cumulated usage. Thus, the positive dev value 
means the over-share and the negative dev value means the 
under-share. The widely used scheduling performances such 
as the wait time and slowdown time will also be presented in 
some arguments. More overall scheduling performances and 
overall fair share performances were presented in previous 
works [1].      

V. RESULTS AND DISCUSSION 

Table II shows the dev performance provided by each 
policy under both actual runtime information (T) and 
approximate runtime information (R) of the highest demand 
user of each month of the IA-64 workload. Table 3 shows the 
same information of the KTH workload while Table 4 shows 
that of the SDSC workload. Table 5-7 show the overall dev 
performances of the two policies on IA-64, KTH and SDSC 
workloads, respectively. Table 8-10 show the overall average 
wait time performance of the two policies on IA-64, KTH and 
SDSC workloads, respectively. Table 11-12 show the overall 
scheduling performances of the two policies on 06/03 IA-64 
workload and 06/00 SDSC workload, respectively. 

According to the results shown in Table 2, these users are 
mostly over-share under most cases. The very interesting 
points are the performances of the goal-oriented policy on 
06/03, 09/03, 10/03, 01/04, 02/04 and 03/04 months. That is, 
the goal-oriented policy provides higher per-user dev 
performances than that produced by the RelShare policy. 
However, the overall absolute dev data shown in Table 5 
shows that the goal-oriented policy provides lower total 
absolute dev performances in all months except 06/03 under 
inaccurate runtime information. According to the scheduling 
performance of all policies on 06/03 month, the goal-oriented 
policy achieves good scheduling performances. Thus, the 
goal-oriented policy trades dev performances for scheduling 
performances in this case. As a result, some jobs are receiving 
exceed resources because doing so will result in a better 
overall scheduling performance which is parts of the objective 
considered.   

For the results of KTH workload, the high demand users do 
not always over-share under the goal-oriented policy. User 
no.3 on 10/96 month has an average job size at 244.4 node-
hours and all 38 jobs of this user require 80 computational 
nodes which is the largest of this month. As a result, this user 
suffered under the basic priority backfill policy (i.e., 
RelShare(1d)).  

However, the goal-oriented policy can reduce the under-
share of this user. There are four months that the goal-oriented 
policy produces larger dev values than that produced by the 
RelShare(1d) policy. These months are 11/96, 02/97, 05/97 
and 07/97. However, overall absolute dev performance of all 
policies of each month in Table 5 shows that the goal-oriented 
policy is fair because it reduces the total absolute deviation of 
all users.  

 
TABLE II 

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH 

MONTH OF IA-64 WORKLOAD 
 

Month 
User 
No. 

RelShare(1d) Tradeoff-fs(Tx:avgX) 
T R T R 

06/03 49 1131 2951 5309 6605 
07/03 3 6227 5920 2778 5447 
08/03 3 4041 3795 3742 3464 
09/03 3 1757 353 4762 3563 
10/03 118 1101 543 1150 1198 
11/03 3 2251 4390 1355 1924 
12/03 103 3249 3349 967 1287 
01/04 3 3459 -70 5007 1109 
02/04 171 85 3427 -1150 -2441 
03/04 42 1764 -187 2247 3185 

 
TABLE III 

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH 

MONTH OF KTH  WORKLOAD 
 

Month 
User 
No. 

RelShare(1d) Tradeoff-fs(Tx:avgX) 
T R T R 

10/96 3 -7730 -6899 -156 -93 
11/96 6 -203 -554 -1607 -1281 
12/96 6 145 -669 -11 394 
01/97 15 1132 1614 230 444 
02/97 84 4878 3996 4311 4858 
03/97 84 4154 4125 354 329 
04/97 14 -1062 -383 -411 -284 
05/97 67 -274 -450 -515 -677 
06/97 29 -1451 -1411 221 220 
07/97 67 -8 -78 155 118 

 
TABLE IV 

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH 

MONTH OF SDSC WORKLOAD 
 

Month 
User 
No. 

RelShare(1d) Tradeoff-fs(Tx:avgX) 
T R T R 

06/00 246 4737 -800 14515 -646 
07/00 151 12241 7924 7989 3151 
08/00 151 10309 10133 4510 7477 
09/00 273 13851 -7017 15642 11092 
10/00 95 -889 -7625 9937 10457 
11/00 95 -1646 1364 24347 27580 
12/00 95 -3748 1008 2666 8332 
01/01 99 12975 12967 2630 -8372 
02/01 174 -2040 20655 5554 16173 
03/01 174 -11530 12333 3430 7035 
04/01 101 -1227 -571 11828 11849 
05/01 101 545 4983 -264 -1090 

 
Another interesting point is user no.6 in 11/96 month which 

suffers under the goal-oriented policy while this user does not 
suffer as much under RelShare policy. This user has 75 
medium size job (i.e., average job size is 114 node-hours). 
However, these jobs are a mixture of 2 to 64 nodes with an 
average runtime of 5.8 hours.  
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Thus, this user is an example of the goal-oriented policy 
weakness presented in the previous work [1]. That is, a user 
with a mixture of jobs may suffer because his/her small jobs 
can be backfilled resulting in a lower fair share priority. Thus, 
the larger jobs will be affected by this change because the jobs 
will be considered for scheduling after a lot of jobs (from 
other higher priority users).  

Similar to the results of IA-64 workload, the high demand 
users of each month of the SDSC workload are mostly 
benefited under the goal-oriented policy, according to the data 
presented in Table 4. The overall absolute dev performances 
in Table 7 also shows that the goal-oriented policy produces 
lower total dev performances than that produced by 
RelShare(1d) on most months, except 06/00. According to the 
scheduling performances of each policy on 06/00 SDSC 
workload shown in Table 9, the goal-oriented policy trades the 
dev performances for the scheduling performances. 

 
TABLE V 

OVERALL ABSOLUTE DEV PERFORMANCE ON IA-64 WORKLOAD 
 

Month 
RelShare(1d) Tradeoff-fs(Tx:avgX) 

T R T R 
06/03 20813 28561 19832 29986 
07/03 72789 85083 61553 72520 
08/03 103526 123068 90127 106287 
09/03 131350 152926 116515 136603 
10/03 148315 174058 132585 153869 
11/03 170053 201312 146209 170737 
12/03 195094 223434 161359 190893 
01/04 225696 250236 182672 210067 
02/04 259492 294952 197859 231871 
03/04 284678 331111 219018 261493 

 
TABLE VI 

OVERALL ABSOLUTE DEV PERFORMANCE ON KTH WORKLOAD 
 

Month 
RelShare(1d) Tradeoff-fs(Tx:avgX) 

T R T R 
10/96 23722 23876 11226 12456 
11/96 45622 47507 26445 27733 
12/96 63754 65695 39754 42806 
01/97 82059 86580 52261 56912 
02/97 102119 108646 68986 76068 
03/97 125979 136087 85437 92557 
04/97 139846 150409 94788 102476 
05/97 148431 158745 103636 109483 
06/97 155120 166703 109049 115794 
07/97 160202 172427 112956 119368 

 
TABLE VII 

OVERALL DEV PERFORMANCE ON SDSC 
 

Month 
RelShare(1d) Tradeoff-fs(Tx:avgX) 

T R T R 
06/00 127867 122842 136207 139704 
07/00 290361 289481 266049 289369 
08/00 441725 479307 367728 343707 
09/00 554176 581898 472440 478405 
10/00 687519 717063 595267 606284 
11/00 729824 773483 675065 713440 
12/00 834837 883556 757964 819434 
01/01 984392 1044091 845105 922062 
02/01 1116066 1244936 959343 1061431 
03/01 1229301 1416714 1051635 1174007 
04/01 1436186 1648090 1198499 1315528 
05/01 1674706 2026606 1273787 1466926 

 

TABLE VIII 
SCHEDULING PERFORMANCES ON 06/03 IA-64 WORKLOAD 

 
Measure 

RelShare(1d) Tradeoff-fs(Tx:avgX) 
T R T R 

Avg. Wait 4.7h 7.6h 4.1h 4.9h 
Max. Wait 104.5h 163.4h 48.8h 61.5h 

Avg. Slowdown 29.6 42.8 27.6 36.3 

 
TABLE IX 

SCHEDULEING PERFORMANCES ON 06/00 SDSC WORKLOAD 
 

Measure 
RelShare(1d) Tradeoff-fs(Tx:avgX) 

T R T R 
Avg. Wait 0.8h 0.9h 0.7h 0.8h 
Max. Wait 94.2h 102.8h 38.9h 103.3h 

Avg. Slowdown 7.9 13.1 6.9 12.9 

 
 In conclusion, the results in this section show that the per-

user deviation of most high demand users is mostly over-
share. Since these users are either have large jobs or have a lot 
of jobs, their jobs will eventually be scheduled or backfilled. 
However, the goal-oriented parallel computer job scheduling 
policies can provide the lowest total absolute deviation values 
on most months. For a few months with slightly higher 
absolute deviation values observed, the goal-oriented policy 
trades these fair share performances for scheduling 
performances. 

Further analysis of the users with a lot of jobs and the users 
with a set of slightly large jobs found the followings. The 
number of jobs does not strongly affect the goal-oriented 
policy performances. The users with a set of slightly large 
jobs, however, can be suffered under the goal-oriented policy 
because their jobs may be difficult to be backfilled. In 
addition, if a few of their smaller jobs are scheduled then 
user’s fair share priority will be reduced. Thus, the larger jobs 
will then be low priority jobs. As a result, these jobs may need 
to wait longer which may lead to an under-share performance. 
If the jobs are not too large to be backfilled, however, the 
job’s owner may be benefited. This is because the jobs may be 
backfilled for performances under the goal-oriented policy. 
The study also shows that the accuracy of the users provided 
runtime information and the number of jobs the user has, do 
not produce any significant impact on the per-user 
performance of the goal-oriented policy.  

VI. CONCLUSIONS 

This study presents and analyzes the per-user performances 
of Tradeoff-fs(Tx:avgX) i.e., the extending goal-oriented 
parallel job scheduling policy to cover fair share objective by 
applying the fair share priority as a branching heuristic. 
Tradeoff-fs(Tx:avgX) and RelShare(1d) are evaluated using 
an event-driven simulator. Three real job traces are used as 
input to the simulator. The per-user performances of the high 
demand users on each month of each workload are studied in 
details. Furthermore, the most-submitted-job users and the 
users with a large error in their runtime information are also 
analyzed.  

The experimental results show that these users are usually 
benefited (over-share) under most situations because their jobs 
are either large or they have a lot of jobs. In the large job case, 
one job executed may result in over-share during that period. 
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In the other case, the jobs may be backfilled for performances. 
Thus, only the users with a mixture of jobs may suffer because 
if the smaller jobs are executing the priority of the remaining 
jobs from the same user will be lower. Therefore, the users 
with mixture of jobs should separate their jobs over a period of 
time under the goal-oriented policy for a better performance 
according to their share. Further analysis does not show any 
significant difference or impact of users with a lot of jobs or 
users with a large runtime approximation error.   

The results presented in this work are further confirmed that 
the Tradeoff-fs(Tw:avgX) policy does achieve good fair share 
performances and scheduling performances. Even though 
some high demand users without a mixture of large and small 
jobs may be benefited, it does not result in a worst overall 
scheduling or fair share performances.     
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