Qualitative Survey on Managing Building Maintenance Projects

Buildings are one of the valuable assets to provide people with shelters for work, leisure and rest. After years of attacks by weather, buildings will deteriorate which need proper maintenance in order to fulfill the requirements and satisfaction of the users. Poorly managed buildings not just give a negative image to the city itself, but also pose potential risk hazards to the health and safety of the general public. As a result, the management of maintenance projects has played an important role in cities like Hong Kong where the problem of urban decay has drawn much attention. However, most research has focused on managing new construction, and little research effort has been put on maintenance projects. Given the short duration and more diversified nature of work, repair and maintenance works are found to be more difficult to monitor and regulate when compared with new works. Project participants may face with problems in running maintenance projects which should be investigated so that proper strategies can be established. This paper aims to provide a thorough analysis on the problems of running maintenance projects. A review of literature on the characteristics of building maintenance projects was firstly conducted, which forms a solid basis for the empirical study. Results on the problems and difficulties of running maintenance projects from the viewpoints of industry practitioners will also be delivered with a view to formulating effective strategies for managing maintenance projects successfully.

Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Development of Web-based Teams Management System in Construction

Construction project control attempts to obtain real-time information and effectively enhance dynamic control and management via information sharing and analysis among project participants to eliminate construction conflicts and project delays. However, survey results for Taiwan indicate that construction commercial project management software is not widely accepted for subcontractors and suppliers. To solve the project communications problems among participants, this study presents a novel system called the Construction Dynamic Teams Communication Management (Con-DTCM) system for small-to-medium sized subcontractors and suppliers in Taiwanese Construction industry, and demonstrates that the Con-DTCM system responds to the most recent project information efficiently and enhances management of project teams (general contractor, suppliers and subcontractors) through web-based environment. Web-based technology effectively enhances information sharing during construction project management, and generates cost savings via the Internet. The main unique characteristic of the proposed Con-DTCM system is extremely user friendly and easily design compared with current commercial project management applications. The Con-DTCM system is applied to a case study of construction of a building project in Taiwan to confirm the proposed methodology and demonstrate the effectiveness of information sharing during the construction phase. The advantages of the Con-DTCM system are in improving project control and management efficiency for general contractors, and in providing dynamic project tracking and management, which enables subcontractors and suppliers to acquire the most recent project-related information. Furthermore, this study presents and implements a generic system architecture.

A Case Study of Applying Virtual Prototyping in Construction

The use of 3D computer-aided design (CAD) models to support construction project planning has been increasing in the previous year. 3D CAD models reveal more planning ideas by visually showing the construction site environment in different stages of the construction process. Using 3D CAD models together with scheduling software to prepare construction plan can identify errors in process sequence and spatial arrangement, which is vital to the success of a construction project. A number of 4D (3D plus time) CAD tools has been developed and utilized in different construction projects due to the awareness of their importance. Virtual prototyping extends the idea of 4D CAD by integrating more features for simulating real construction process. Virtual prototyping originates from the manufacturing industry where production of products such as cars and airplanes are virtually simulated in computer before they are built in the factory. Virtual prototyping integrates 3D CAD, simulation engine, analysis tools (like structural analysis and collision detection), and knowledgebase to streamline the whole product design and production process. In this paper, we present the application of a virtual prototyping software which has been used in a few construction projects in Hong Kong to support construction project planning. Specifically, the paper presents an implementation of virtual prototyping in a residential building project in Hong Kong. The applicability, difficulties and benefits of construction virtual prototyping are examined based on this project.

Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.