Universal Kinetic Modeling of RAFT Polymerization using Moment Equations

In the following text, we show that by introducing universal kinetic scheme, the origin of rate retardation and inhibition period which observed in dithiobenzoate-mediated RAFT polymerization can be described properly. We develop our model by utilizing the method of moments, then we apply our model to different monomer/RAFT agent systems, both homo- and copolymerization. The modeling results are in an excellent agreement with experiments and imply the validity of universal kinetic scheme, not only for dithiobenzoate-mediated systems, but also for different types of monomer/RAFT agent ones.




References:
[1] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R.
T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H.
Thang, "Living Free-Radical Polymerization by Reversible Addition-
Fragmentation Chain Transfer: The RAFT Process", Macromolecules,
vol. 31, pp. 5559-5562, 1998.
[2] D. G. Hawthorne, G. Moad, E. Rizzardo, S. H. Thang, "Living Radical
Polymerization with Reversible Addition-Fragmentation Chain Transfer
(RAFT): Direct ESR Observation of Intermediate Radicals",
Macromolecules, vol. 32, pp. 5457-5459, 1999.
[3] C. M. Schilli, M. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K.
Edwards, G. Karlsson, A. H. E. Mueller, "A New Double-Responsive
Block Copolymer Synthesized via RAFT Polymerization: Poly(N
isopropylacrylamide)-block-poly(acrylic acid)", Macromolecules, vol.
37, pp. 7861-7866, 2004.
[4] Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, S. H. Thang, "A More
Versatile Route to Block Copolymers and Other Polymers of Complex
Architecture by Living Radical Polymerization: The RAFT Process",
Macromolecules, vol. 32, pp. 2071-2074, 1999.
[5] H. De Brouwer, M. A. J. Schellekens, B. Klumperman, M. J. Monteiro,
A. L. German, "Controlled radical copolymerization of styrene and
maleic anhydride and the synthesis of novel polyolefin-based block
copolymers by reversible addition-fragmentation chain-transfer (RAFT)
polymerization", J. Polym Sci Part A: Polym Chem., vol. 38, pp. 3596-
3603, 2000.
[6] X. Sun, Y. Luo, R. Wang, B. Li, B. Liu, S. Zhu, "Programmed Synthesis
of Copolymer with Controlled Chain Composition Distribution via
Semibatch RAFT Copolymerization", Macromolecules, vol. 40, pp. 849-
859, 2007.
[7] R. T. A. Mayadunne, J. Jeffery, G. Moad, E. Rizzardo, "Living Free
Radical Polymerization with Reversible Addition−Fragmentation Chain
Transfer (RAFT Polymerization): Approaches to Star Polymers",
Macromolecules, vol. 36, pp. 1505-1513, 2003.
[8] S. Perrier, P. Takolpuckdee, "Macromolecular design via reversible
addition-fragmentation chain transfer (RAFT)/xanthates (MADIX)
polymerization", J. Polym. Sci., Part A: Polym. Chem., vol. 43, pp.
5347-5393, 2005.
[9] G. Moad, R. T. A. Mayadunne, E. Rizzardo, M. Skidmore, S. H. Thang,
"Synthesis of novel architectures by radical polymerization with
reversible addition fragmentation chain transfer (RAFT
polymerization)", Macromol. Symp., vol. 192, 1-12, 2003.
[10] L. Barner, C. Barner-Kowollik, T. P. Davis, M. H. Stenzel, "Complex
Molecular Architecture Polymers via RAFT", Aust. J. Chem., vol. 57,
pp. 19-24, 2004.
[11] C. Barner-Kowollik, T. P. Davis, M. H. Stenzel, "Synthesis of star
polymers via RAFT polymerization: What is possible?", Aust. J. Chem.,
vol. 59, pp. 719-727, 2006.
[12] B. Liu, A. Kazlauciunas, J. T. Guthrie, S. Perrier, "One-Pot
Hyperbranched Polymer Synthesis Mediated by Reversible Addition
Fragmentation Chain Transfer (RAFT) Polymerization",
Macromolecules, vol. 38, pp. 2131-2136, 2005.
[13] C. Barner-Kowollik, M. Buback, B. Charleux, M. L. Coote, M. Drache,
T. Fukuda, A. Goto, B. Klumperman, A. B. Lowe, J. B. McLeary, G.
Moad, M. J. Monteiro, R. D. Sanderson, M. P. Tonge, P. Vana,
"Mechanism and kinetics of dithiobenzoate-mediated RAFT
polymerization. I. The current situation", J. Polym. Sci., Part A: Polym.
Chem., vol. 44, pp. 5809-5831, 2006.
[14] M. J. Monteiro, "Design strategies for controlling the molecular weight
and rate using reversible addition-fragmentation chain transfer mediated
living radical polymerization", J. Polym. Sci., Part A: Polym. Chem.,
vol. 43, pp. 3189-3204, 2005.
[15] C. Barner-Kowollik, J. F. Quinn, D. R. Morsley, T. P. Davis, "Modeling
the reversible addition-fragmentation chain transfer process in cumyl
dithiobenzoate-mediated styrene homopolymerizations: Assessing rate
coefficients for the addition-fragmentation equilibrium", J. Polym. Sci.,
Part A: Polym. Chem., vol. 39, pp. 1353-1365, 2001.
[16] A. Feldermann, M. L. Coote, M. H. Stenzel, T. P. Davis, C. Barner-
Kowollik, "Consistent Experimental and Theoretical Evidence for Long-
Lived Intermediate Radicals in Living Free Radical Polymerization", J.
Am. Chem. Soc., vol. 126, pp. 15915-19923, 2004.
[17] M. J. Monteiro, H. de Brouwer, "Intermediate Radical Termination as
the Mechanism for Retardation in Reversible Addition−Fragmentation
Chain Transfer Polymerization", Macromolecules, vol. 34, pp. 349-352,
2001.
[18] M. Drache, G. Schmidt-Naake, M. Buback, P. Vana, "Modeling RAFT
polymerization kinetics via Monte Carlo methods: cumyl dithiobenzoate
mediated methyl acrylate polymerization", Polymer, vol. 46, pp. 8483-
8493, 2005.
[19] M. Buback, P. Vana, "Mechanism of Dithiobenzoate-Mediated RAFT
Polymerization: A Missing Reaction Step", Macromol. Rapid Commun.,
vol. 27, pp. 1299-1305, 2006.
[20] M. Buback, O. Janssen, R. Oswald, S. Schmatz, P. Vana, "A Missing
Reaction Step in Dithiobenzoate-Mediated RAFT Polymerization",
Macromol. Symp., vol. 248, pp. 158-167, 2007.
[21] J. Pallares, G. Jaramillo-Soto, C. Flores-Catano, E. Vivaldo Lima, L. M.
F. Lona, A. Penlidis, "A Comparison of Reaction Mechanisms for
Reversible Addition-Fragmentation Chain Transfer Polymerization
Using Modeling Tools", J. Macromol. Sci., Pure Appl. Chem., vol. 43,
pp. 1293-1322, 2006.
[22] S. W. Prescott, "Chain-Length Dependence in Living/Controlled Free-
Radical Polymerizations: Physical Manifestation and Monte Carlo
Simulation of Reversible Transfer Agents", Macromolecules, vol. 36,
pp. 9608-9621, 2003.
[23] S. W. Prescott, M. J. Ballard, E. Rizzardo, R. G. Gilbert, "Rate
Optimization in Controlled Radical Emulsion Polymerization Using
RAFT", Macromol. Theory Simul., vol. 15, pp. 70-86, 2006.
[24] A. R. Wang, S. Zhu, "Modeling the reversible addition-fragmentation
transfer polymerization process", J. Polym. Sci., Part A: Polym. Chem.,
vol. 41, pp. 1553-1566, 2003.
[25] A. R. Wang, S. Zhu, "Effects of Diffusion-Controlled Radical Reactions
on RAFT Polymerization", Macromol. Theory Simul., vol. 12, pp. 196-
208, 2003.
[26] M. L. Coote, L. Radom, "Ab Initio Evidence for Slow Fragmentation in
RAFT Polymerization", J. Am. Chem. Soc., vol. 125 , pp. 1490-1491,
2003.
[27] M. L. Coote, E. H. Krenske, E. I. Izgorodina, "Computational Studies of
RAFT Polymerization-Mechanistic Insights and Practical Applications",
Macromol. Rapid Commun., vol. 27, pp. 473-497, 2006.
[28] M. L. Coote, E. I. Izgorodina, E. H. Krenske, M. Busch, C. Barner-
Kowollik, "Quantum Chemical Mapping of Initialization Processes in
RAFT Polymerization", Macromol. Rapid Commun., vol. 27, pp. 1015-
1022, 2006.
[29] E. I. Izgorodina, M. L. Coote, "Accurate ab initio prediction of
propagation rate coefficients in free-radical polymerization:
Acrylonitrile and vinyl chloride", Chem. Phys., vol. 324, 96-110, 2006.
[30] M. L. Coote, C. Barner-Kowollik, "Ab Initio Kinetic Modelling: A
Paradigm Shift in Kinetic Data Analysis", Aust. J. Chem., vol. 59, pp.
712-718, 2006.
[31] D. H. Nguyen, P. Vana, "On the Mechanism of Radical Polymerization
of Methyl Methacrylate using Dithiobenzoic Acid as Mediator", Aust. J.
Chem., vol. 59, pp. 549-559, 2006.
[32] Y. Kwak, A. Goto, Y. Tsujii, Y. Murata, K. Komatsu, T. Fukuda, "A
Kinetic Study on the Rate Retardation in Radical Polymerization of
Styrene with Addition−Fragmentation Chain Transfer",
Macromolecules, vol. 35, pp. 3026-3029, 2002.
[33] A. Goto, K. Sato, Y. Tsujii, T. Fukuda, G. Moad, E. Rizzardo, S. H.
Thang, "Mechanism and Kinetics of RAFT-Based Living Radical
Polymerizations of Styrene and Methyl Methacrylate", Macromolecules,
vol. 34, pp. 402-408, 2001.
[34] S. Perrier, C. Barner-Kowollik, J. F. Quinn, P. Vana, T. P. Davis,
"Origin of Inhibition Effects in the Reversible Addition Fragmentation
Chain Transfer (RAFT) Polymerization of Methyl Acrylate",
Macromolecules, vol. 35, pp. 8300-8306, 2002.
[35] C. Barner-Kowollik, M. L. Coote, T. P. Davis, L. Radom, P. Vana, "The
reversible addition-fragmentation chain transfer process and the strength
and limitations of modeling: Comment on the magnitude of the
fragmentation rate coefficient ", J. Polym. Sci., Part A: Polym. Chem.,
vol. 41, pp. 2828-2832, 2003.
[36] A. R. Wang, S. Zhu, Y. Kwak, A. Goto, T. Fukuda, M. J. Monteiro, "A
difference of six orders of magnitude: A reply to the magnitude of the
fragmentation rate coefficient ", J. Polym. Sci., Part A: Polym. Chem.,
vol. 41, pp. 2833-2839, 2003.
[37] C. Barner-Kowollik, P. Vana, J. F. Quinn, T. P. Davis, "Long-lived
intermediates in reversible addition-fragmentation chain-transfer
(RAFT) polymerization generated by ╬│ radiation", J. Polym. Sci., Part A:
Polym. Chem., vol. 40, pp. 1058-1063, 2002.
[38] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A.
Postma, E. Rizzardo, S. H. Thang, "Living free radical polymerization
with reversible addition - fragmentation chain transfer (the life of
RAFT)", Polym. Int., vol. 49, pp. 993-1001, 2000.
[39] A. Ah Toy, P. Vana, T. P. Davis, C. Barner-Kowollik, "Reversible
Addition Fragmentation Chain Transfer (RAFT) Polymerization of
Methyl Acrylate: Detailed Structural Investigation via Coupled Size
Exclusion Chromatography−Electrospray Ionization Mass Spectrometry
(SEC−ESI-MS)", Macromolecules, vol. 37, pp. 744-751, 2004.
[40] P. Vana, T. P. Davis, C. Barner-Kowollik, "Kinetic Analysis of
Reversible Addition Fragmentation Chain Transfer (RAFT)
Polymerizations: Conditions for Inhibition, Retardation, and Optimum
Living Polymerization", Macromol. Theory Simul., vol. 11, pp. 823-835,
2002.
[41] C. Barner-Kowollik, J. F. Quinn, T. L. U. Nguyen, J. P. A. Heuts, T. P.
Davis, "Kinetic Investigations of Reversible Addition Fragmentation
Chain Transfer Polymerizations: Cumyl Phenyldithioacetate Mediated
Homopolymerizations of Styrene and Methyl Methacrylate",
Macromolecules, vol. 34, 7849-7857, 2001.
[42] P. Vana, J. F. Quinn, T. P. Davis, C. Barner-Kowollik, "Recent
Advances In The Kinetics Of Reversible Addition Fragmentation Chain
Transfer Polymerization", Aust. J. Chem., vol. 55, pp. 425-431, 2002.
[43] C. Barner-Kowollik, T. P. Davis, J. P. A. Heuts, M. H. Stenzel, P. Vana,
M. Whittaker, "RAFTing down under: Tales of missing radicals, fancy
architectures, and mysterious holes", J. Polym. Sci. Part A: Polym.
Chem., vol. 41, 365-375, 2003.
[44] T. P. Davis, C. Barner-Kowollik, T. L. U. Nguyen, M. H. Stenzel, J. F.
Quinn, P. Vana, "Influences of the Structural Design of RAFT Agents
on Living Radical Polymerization Kinetics", ACS Symp. Ser., vol. 854,
pp. 551-569, 2003.
[45] Y. Kwak, A. Goto, T. Fukuda, "Rate Retardation in Reversible
Addition−Fragmentation Chain Transfer (RAFT) Polymerization:
Further Evidence for Cross-Termination Producing 3-Arm Star Chain",
Macromolecules, vol. 37, pp. 1219-1225, 2004.
[46] E. Chernikova, A. Morozov, E. Leonova, E. Garina, V. Golubev, C. Bui,
B. Charleux, "Controlled Free-Radical Polymerization of n-Butyl
Acrylate by Reversible Addition−Fragmentation Chain Transfer in the
Presence of tert-Butyl Dithiobenzoate. A Kinetic Study",
Macromolecules, vol. 37, pp. 6329-6339, 2004.
[47] F. M. Calitz, M. P. Tonge, R. D. Sanderson, "Kinetic and Electron Spin
Resonance Analysis of RAFT Polymerization of Styrene",
Macromolecules, vol. 36, pp. 5-8, 2003.
[48] F. M. Calitz, M. P. Tonge, R. D. Sanderson, "Electron spin resonance
studies of reversible addition-fragmentation transfer polymerisation",
Macromol. Symp., vol. 193, pp. 277-288, 2003.
[49] Y. Kwak, A. Goto, K. Komatsu, Y. Sugiura, T. Fukuda,
"Characterization of Low-Mass Model 3-Arm Stars Produced in
Reversible Addition−Fragmentation Chain Transfer (RAFT) Process",
Macromolecules, vol. 37, pp. 4434-4440, 2004.
[50] T. Arita, M. Buback, O. Janssen, P. Vana, "RAFT-Polymerization of
Styrene up to High Pressure: Rate Enhancement and Improved Control",
Macromol. Rapid Commun., vol. 25, pp. 1376-1381, 2004.
[51] T. Arita, S. Beuermann, M. Buback, P. Vana, "RAFT Polymerization of
Methyl Acrylate in Carbon Dioxide", Macromol. Mater. Eng., vol. 290,
pp. 283-293, 2005.
[52] T. Arita, M. Buback, P. Vana, "Cumyl Dithiobenzoate Mediated RAFT
Polymerization of Styrene at High Temperatures", Macromolecules, vol.
38, pp. 7935-7943, 2005.
[53] F. M. Calitz, J. B. McLeary, J. M. McKenzie, M. P. Tonge, B.
Klumperman, R. D. Sanderson, "Evidence for Termination of
Intermediate Radical Species in RAFT-Mediated Polymerization",
Macromolecules, vol. 36, pp. 9687-9690, 2003.
[54] R. Venkatesh, B. B. P. Staal, B. Klumperman, M. J. Monteiro,
"Characterization of 3- and 4-Arm Stars from Reactions of Poly(butyl
acrylate) RAFT and ATRP Precursors", Macromolecules, vol. 37, pp.
7906-7917, 2004.
[55] A. Alberti, M. Benaglia, M. Laus, D. Macciantelli, K. Sparnacci, "Direct
ESR Detection of Free Radicals in the RAFT Polymerization of
Styrene", Macromolecules, vol. 36, pp. 736-740, 2003.
[56] M. P. Tonge, F. M. Calitz, R. D. Sanderson, "ESR Detection of
Propagating Radical Species during RAFT-Mediated Polymerization",
Macromol. Chem. Phys., vol. 207, pp. 1852-1860, 2006.
[57] E. T. A. Van Den Dungen, H. Matahwa, J. B. McLeary, R. D.
Sanderson, B. Klumperman, "Initialization behavior at various target
molecular weight RAFT-mediated methyl acrylate polymerizations", J.
Polym. Sci., Part A: Polym. Chem., vol. 46, pp. 2500-2509, 2008.
[58] J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge, R. D.
Sanderson, B. Klumperman, "A 1H NMR Investigation of Reversible
Addition−Fragmentation Chain Transfer Polymerization Kinetics and
Mechanisms. Initialization with Different Initiating and Leaving
Groups", Macromolecules, vol. 38, pp. 3151-3161, 2005.
[59] J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge, R. D.
Sanderson, B. Klumperman, "Beyond Inhibition: A 1H NMR
Investigation of the Early Kinetics of RAFT-Mediated Polymerization
with the Same Initiating and Leaving Groups", Macromolecules, vol. 37,
pp. 2383-2394, 2004.
[60] J. B. McLeary, J. M. McKenzie, M. P. Tonge, R. D. Sanderson, B.
Klumperman, "Initialisation in RAFT-mediated polymerisation of
methyl acrylate", Chem. Commun., 1950, 2004.
[61] H. Tobita, F. Yanase, "Monte Carlo Simulation of Controlled/Living
Radical Polymerization in Emulsified Systems", Macromol. Theory
Simul., vol. 16, pp. 476-488, 2007.
[62] H. Chaffey-Millar, D. Stewart, M. M. T. Chakravarty, G. Keller, C.
Barner-Kowollik, "A Parallelised High Performance Monte Carlo
Simulation Approach for Complex Polymerisation Kinetics", Macromol.
Theory Simul., vol. 16, pp. 575-592, 2007.
[63] D. Konkolewicz, B. S. Hawkett, A. Gray-Weale, S. Perrier, "RAFT
Polymerization Kinetics: Combination of Apparently Conflicting
Models", Macromolecules, vol. 41, pp. 6400-6412, 2008.
[64] C. Barner-Kowollik, G. T. Russell, "Chain-length-dependent termination
in radical polymerization: Subtle revolution in tackling a long-standing
challenge", Progress in Polymer Science, vol. 34, pp. 1211-1259, 2008.
[65] J. Brandrup, E. Immergut, E. Grulke, Polymer Handbook, 4th ed., New
York: Wiley, 1999.
[66] H. Fischer, L. Radom, "Factors Controlling the Addition of Carbon-
Centered Radicals to Alkenes-An Experimental and Theoretical
Perspective", Angew. Chem., Int. Ed., vol. 40, pp. 1340-1371, 2001.
[67] A. Feldermann, A. Ah Toy, H. Phan, M. H. Stenzel, T. P. Davis, C.
Barner-Kowollik, "Reversible addition fragmentation chain transfer
copolymerization: influence of the RAFT process on the copolymer
composition", Polymer, vol. 45, pp. 3997-4007, 2004.