F-IVT Actuation System to Power Artificial Knee Joint

The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.




References:
[1] C. T. Farley, D. P. Ferris, 1998, "10 Biomechanics of Walking and
Running: Center of Mass Movements to Muscle Action. Exercise and
sport sciences reviews", 26(1): pp. 253-286. DOI: 10.1249/00003677-
199800260-00012.
[2] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr,
2006, "Development of a Lightweight, Underactuated Exoskeleton for
Load-Carrying Augmentation", IEEE International Conference on
Robotics and Automation, ICRA, IEEE, pp. 3485–3491, DOI:
10.1109/ROBOT.2006.1642234.
[3] L. Mooney, H. Herr, 2013, "Continuously-Variable Series-Elastic
Actuator", IEEE International Conference on Rehabilitation Robotics,
IEEE, pp. 1-6, DOI: 10.1109/ICORR.2013.6650402.
[4] W. K. Durfee, A. Rivard, 2005, "Design and Simulation of a Pneumatic,
Stored-Energy, Hybrid Orthosis for Gait Restoration", Journal of Biomechanical Engineering, 127(6): pp. 1014-1019. DOI:
10.1115/1.2050652.
[5] A. J. van den Bogert, S. Samorezov, B. L. Davis, W. A. Smith, 2012,
"Modeling and optimal Control of an Energy-Storing Prosthetic Knee",
Journal of biomechanical engineering, 134(5), DOI:10.1115/1.4006680.
[6] A. M. Dollar, H. Herr, 2008, "Lower Extremity Exoskeletons and Active
Orthoses: Challenges and State-of-the-art", IEEE Transactions on
Robotics, 24(1), pp. 144-158. DOI: 10.1109/TRO.2008.915453.
[7] M. Grimmer, M. Eslamy, A. Seyfarth, 2014, "Energetic and Peak Power
Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for
Walking and Running", Actuators, 3(1), pp. 1-19. DOI:
10.3390/act3010001.
[8] H. Kawamoto, Y. Sankai, 2002, "Power Assist System HAL-3 for Gait
Disorder Person", In Computers Helping People With Special Needs,
Springer Berlin Heidelberg, 2398, pp. 196-203. DOI: 0.1007/3-540-
45491-8_43.
[9] J. E. Pratt, B. T. C. J. Krupp, Morse, S. H. Collins, 2004, "The
RoboKnee: an Exoskeleton for Enhancing Strength and Endurance
During Walking". IEEE International Conference on Robotics and
Automation, ICRA, IEEE, 3, pp. 2430-2435. DOI:
10.1109/ROBOT.2004.1307425.
[10] A. Zoss, H. Kazerooni, 2006, "Design of an Electrically Actuated Lower
Extremity Exoskeleton", Advanced Robotics, 20(9), pp. 967-988. DOI:
10.1163/156855306778394030.
[11] D. F. B. Haeufle, M. D. Taylor, S. Schmitt, H. Geyer, 2012, "A Clutched
Parallel Elastic Actuator Concept: Towards Energy Efficient Powered
Legs in Prosthetics and Robotics", Proc. 4th IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics
(BioRob), IEEE, pp. 1614-1619, DOI: 0.1109/BioRob.2012.6290722.
[12] V. Luciano, E. Sardini, M. Serpelloni, G. Baronio, 2012, "Analysis of an
Electromechanical Generator Implanted in a Human Total Knee
Prosthesis", In Sensors Applications Symposium (SAS), IEEE, pp. 1-5,
DOI: 10.1109/SAS.2012.6166273.
[13] J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D.
Kuo, 2008, "Biomechanical Energy Harvesting: Generating Electricity
During Walking with Minimal User Effort", Science, 319(.5864): 807-
810. DOI: 10.1126/science.1149860.
[14] B. J. Bergelin, J. O. Mattos, J. G. Wells, P. A. Voglewede, 2010
"Concept Through Preliminary Bench Testing of a Powered Lower Limb
Prosthetic Device", Journal of mechanisms and robotics, 2(4), 041005 (9
pages), DOI: :10.1115/1.400220.
[15] J. Borràs, A. M. Dollar, 2014, "Actuation Torque Reduction in Parallel
Robots Using Joint Compliance". Journal of Mechanisms and Robotics,
6(2), 021006 (11 pages), DOI: 10.1115/1.4026628.
[16] M. Hutter, C. D. Remy, M. A. Hoepflinger, R. Siegwart, 2011, "High
Compliant Series Elastic Actuation for the Robotic Leg ScarlETH", N°.
EPFL-CONF-175826, In Proc. of the International Conference on
Climbing and Walking Robots (CLAWAR), Eidgenössische Technische
Hochschule Zürich, Autonomous Systems Lab, Zürich, DOI:
http://dx.doi.org/10.3929/ethz-a-010025741.
[17] C. Lagoda, A. C. Schouten, A. H. Stienen, E. E. Hekman, H. van der
Kooij, 2010, "Design of an Electric Series Elastic Actuated Joint for
Robotic Gait Rehabilitation Training", In 3rd IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics
(BioRob), IEEE, pp. 21-26. DOI: 10.1109/BIOROB.2010.5626010.
[18] F. Sergi, D. Accoto, G. Carpino, N. L. Tagliamonte, E. Guglielmelli,
2012, "Design and Characterization of a Compact Rotary Series Elastic
Actuator for Knee Assistance during Overground Walking", In 4th IEEE
RAS & EMBS International Conference on: Biomedical Robotics and
Biomechatronics (BioRob), IEEE, pp. 1931-1936. DOI:
10.1109/BioRob.2012.6290271.
[19] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. van der Helm, H.
van der Kooij, 2006, "A Series Elastic-and Bowden-Cable-Based
Actuation System for Use as Torque Actuator in Exoskeleton-Type
Robots", The international journal of robotics research, 25(3): pp. 261-
281. DOI: 10.1109/ICORR.2005.1501150.
[20] K. Bharadwaj, T. G. Sugar, J. B. Koeneman, E. J. Koeneman, 2005,
"Design Of A Robotic Gait Trainer Using Spring Over Muscle Actuators
for Ankle Stroke Rehabilitation", Journal of Biomechanical Engineering,
127(6): pp. 1009-1013. DOI: 10.1115/1.2049333.
[21] D. Accoto, G. Carpino, F. Sergi, N. L. Tagliamonte, L. Zollo, E.
Guglielmelli, "Design and Characterization of a Novel High-Power
Series Elastic Actuator for a Lower Limb Robotic Orthosis", Int J Adv
Robot Syst, 2013, 10(359), pp. 1-12. DOI: 5772/56927.
[22] D. Paluska, H. Herr, 2006, "The Effect of Series Elasticity on Actuator
Power and Work Output: Implications for Robotic and Prosthetic Joint
Design", Robotics and Autonomous Systems, 54(8), pp: 667-673. DOI:
10.1016/j.robot.2006.02.013.
[23] K. W. Hollander, R. Ilg, T. G. Sugar, D. Herring, 2006, "An Efficient
Robotic Tendon for Gait Assistance", Journal of Biomechanical
Engineering, 128(5), pp: 788-791. DOI: 10.1115/1.2264391.
[24] G. A. Pratt, M. M. Williamson, 1995, "Series Elastic Actuators", Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, ’Human Robot Interaction and Cooperative Robots’, 1, pp. 399-
406. DOI: 10.1109/IROS.1995.525827.
[25] E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, H. M. Herr,
2013, "Clutchable Series-Elastic Actuator: Design of a Robotic Knee
Prosthesis for Minimum Energy Consumption", In IEEE International
Conference on Rehabilitation Robotics (ICORR), IEEE, pp. 1-6, DOI:
10.1109/ICORR.2013.6650383.
[26] K. Endo, D. Paluska, H. Herr, 2006, "A Quasi-Passive Model of Human
Leg Function in Level-Ground Walking", In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, pp. 4935-4939,
DOI: 10.1109/IROS.2006.282454.
[27] R. Alò, F. Bottiglione, G. Mantriota, "An Innovative Design of Artificial
Knee Joint Actuator with Energy Recovery Capabilities", 2015, Journal
of Mechanisms and Robotics, DOI: 10.1115/1.4030056.
[28] F. Bottiglione, G. Mantriota 2013, "Effect of the Ratio Spread of CVU
in Automotive Kinetic Energy Recovery Systems", ASME Journal of
Mechanica Design, 135(6), 061001 (9 pages), DOI: 10.1115/1.4024121.
[29] L. Mangialardi, G. Mantriota, 1996, "Dynamic Behaviour of Wind
Power Systems Equipped with Automatically Regulated Continuously
Variable Transmission", Renewable Energy, An International Journal.
7(2), pp. 185-203. DOI: 10.1016/0960-1481(95)00125-5.
[30] G. Carbone, L. Mangialardi, G. Mantriota, 2004, "A Comparison of the
Performance of Full and Half Toroidal Traction Drives", Mechanism
and Machine Theory, 39, pp. 921-942, DOI:
10.1016/j.mechmachtheory.2004.04.003.
[31] G. Mantriota, 2005, "Fuel Consumption of a Vehicle with Power Split
CVT System", International Journal of Vehicle Design, 37(4), pp. 327-
342, DOI: 10.1504/IJVD.2005.006598.
[32] L. G. Brown, G. A. Brown, B. A. Brown, 2013, "Locked Contact
Infinitely Variable Transmission". Patent n. US8419589 B1.
[33] C. J. Greenwood, A. D. De Freitas, A. R. Oliver, 2011, "Drive
mechanism for Infinitely Variable Transmission". Patent n. US7955210
B2.
[34] K. Kazerounian, Z. Furu-Szekely, 2006, "Parallel Disk Continuously
Variable Transmission (PDCVT)", Mechanism and machine theory,
41(5), pp: 537-566. DOI: 10.1016/j.mechmachtheory.2005.07.007.
[35] C. B. Lohr, J. W. Sherrill, B. P. Pohl, R. Dawson, C. Pew, 2014,
"Infinitely Variable Transmissions, Continuously Variable
Transmissions, Methods, Assemblies, Subassemblies, and Components
Therefor", Patent n. US8721485 B2.
[36] M. Douglas, 2010, Infinitely Variable Transmission, Patent
n. US7704184 B2.
[37] F. Bottiglione, G. Mantriota, 2011, "Reversibility of Power-Split
transmissions", ASME Journal of Mechanical Design, 133(8), 08450 (5
pages), DOI: 10.1115/1.4004586.
[38] L. Mangialardi, G. Mantriota, 1999, "Power Flows and Efficiency in
Infinitely Variable Transmissions", Mechanism and Machine Theory.
34(7), pp. 973-994, DOI: 10.1016/S0094-114X(98)00089-5.
[39] G. Mantriota, 2002, "Performances of a parallel infinitely variable
transmission with a Type II Power Flow", Mechanism and Machine
Theory. 37(6), pp. 555-578, DOI: 10.1016/S0094-114X(02)00018-6.
[40] G. Mantriota, 2002, "Performances of a series Infinitely Variable
Transmission with a Type I Power Flow", Mechanism and Machine
Theory, 37(6), pp. 579-597, DOI: 10.1016/S0094-114X(02)00017-4.
[41] I. Schafer, P. Bourlier, F. Hantschack, E. W. Roberts, S. D. Lewis, D. J.
Forster, C. John, 2005, "Space Lubrication and Performance of
Harmonic Drive Gears", In Proceedings of the 11th ESMATS
Symposium, pp. 65-72.