EBSD Investigation of Friction Stir Welded Duplex Stainless Steel

Electron back-scattered diffraction was used to follow the evolution of microstructure from the base metal to the stir zone (SZ) in a duplex stainless steel subjected to friction stir welding. In the stir zone (SZ), a continuous dynamic recrystallization (CDRX) was evidenced for ferrite, while it was suggested that a static recrystallization together with CDRX may occur for austenite. It was found that ferrite and austenite grains in the SZ take a typical shear texture of bcc and fcc materials respectively.





References:
[1] K. Okamoto, S. Hirano: ÔÇÿMetallurgical and mechanical properties of
friction stir welded stainless steels-, Proc. 4th Int. FSW Symposium,
Park City, UT, USA, 2003.
[2] Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C.O. Pettersson:
ÔÇÿMicrostructure and mechanical properties of friction stir welded SAF
2507 super duplex stainless steel-, Mater. Sci. Eng. A, 2005, 397, 376-
384.
[3] T. Saeid, A. Abdollah-zadeh, H. Assadi, F. Malek Ghaini: ÔÇÿEffect of
friction stir welding speed on the microstructure and mechanical
properties of a duplex stainless steel- Mater. Sci. Eng. A, 2008, 496,
262-268.
[4] J.C. Lippold, D.J. Kotecki: ÔÇÿWelding metallurgy and weldability of
stainless steels-, 230; 2005, New Jersey, John Wiley & Sons.
[5] D.P. Field, T.W. Nelson, Y. Hovanski: ÔÇÿHeterogeneity of
crystallographic texture in friction stir welds of aluminum-, Metall.
Mater. Trans. A, 2001, 32, 2869-2877.
[6] H. Miura, T. Sakai, H. Hamji, J. J. Jonas: ÔÇÿPreferential nucleation
of dynamic recrystallization at triple junctions- Scripta
Mater., 2004, 50, 65-69.
[7] D.J. Badiola, A.I. Mendia, I. Guti'errez: ÔÇÿStudy by EBSD of the
development of the substructure in a hot deformed 304 stainless steel-,
Mater. Sci. Eng. A., 2005, 394, 445-454.
[8] S. Mironov, Y.S. Sato, H. Kokawa: ÔÇÿMicrostructural evolution during
friction stir-processing of pure iron-, Acta Mater., 2008, 56, 2602-2614.
[9] R.W. Fonda, J.F. Bingert, K.J. Colligan: ÔÇÿDevelopment of grain structure
during friction stir welding-, Scripta Mater., 2004, 51, 243-248.
[10] L.S. Toth, P. Gilormini, J.J. Jonas: ÔÇÿEffect of rate sensitivity on the
stability of torsion textures-, Acta Metall., 1988, 36, 3077-3091.
[11] J. Baczynski, J.J. Jonas: ÔÇÿTexture development during the torsion testing
of ╬▒-iron and two IF steels-, Acta Mater., 1996, 44, 4273-4288.
[12] F. Montheillet, P. Gilormini, J.J. Jonas: ÔÇÿRelation between axial stresses
and texture development during torsion testing: A simplified theory-,
Acta Metall., 1985, 33, 705-717.
[13] S. Gourdet, F. Montheillet: ÔÇÿA model of continuous dynamic
recrystallization-, Acta Mater., 2003, 51, 2685-2699.
[14] M.R. Barnett, F. Montheillet: ÔÇÿThe generation of new high-angle
boundaries in aluminium during hot torsion-, Acta Mater., 2002, 50,
2285-2296.
[15] Y.S. Sato, W.T. Nelson, C.J. Sterling: ÔÇÿRecrystallization in type 304L
stainless steel during friction stirring-, Acta Mater., 2005, 53, 637-645.
[16] F.J. Humphreys, M. Hatherly: ÔÇÿRecrystallization and Related
Annealing Phenomena-, 2nd edn, 2004, New York, Pergamon Press.
[17] S. Xu, X. Deng: ÔÇÿA study of texture patterns in friction stir welds- Acta
Mater., 2008, 56 1326-1341.