Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets

We have developed a new computer program in
Fortran 90, in order to obtain numerical solutions of a system
of Relativistic Magnetohydrodynamics partial differential equations
with predetermined gravitation (GRMHD), capable of simulating
the formation of relativistic jets from the accretion disk of matter
up to his ejection. Initially we carried out a study on numerical
methods of unidimensional Finite Volume, namely Lax-Friedrichs,
Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods
dependent on Riemann problems, applied to equations Euler in
order to verify their main features and make comparisons among
those methods. It was then implemented the method of Finite
Volume Centered of Nessyahu-Tadmor, a numerical schemes that
has a formulation free and without dimensional separation of
Riemann problem solvers, even in two or more spatial dimensions,
at this point, already applied in equations GRMHD. Finally, the
Nessyahu-Tadmor method was possible to obtain stable numerical
solutions - without spurious oscillations or excessive dissipation -
from the magnetized accretion disk process in rotation with respect
to a central black hole (BH) Schwarzschild and immersed in a
magnetosphere, for the ejection of matter in the form of jet over a
distance of fourteen times the radius of the BH, a record in terms
of astrophysical simulation of this kind. Also in our simulations,
we managed to get substructures jets. A great advantage obtained
was that, with the our code, we got simulate GRMHD equations in
a simple personal computer.





References:
[1] P. Anninos, P. C. Fragile, J. D. Salmonson, Cosmos++ : Relativistic
Magnetohydrodynamics on Unstructured Grids with Local Adaptive
Refinement, Astrophys. J., 635 (2005) 7-23.
[2] J. Balbás, E. Tadmor, C.-C. Wu,Non-oscillatory central schemes for
one- and two-dimensional MHD equations: I, J. Comput. Phys., 201
(2004) pp. 261-285.
[3] V. S. Beskin, Magnetohydrodynamic models of astrophysical jets.
Phys. Uspekhi, 53 (2010) 1199-1233.
[4] V. S. Beskin, MHD flows in compact astrophysical objects, Springer,
Heidelberg, 2010.
[5] COCONUT/COCOA.
[6] L. Del Zanna, et al., ECHO: an Eulerian Conservative High
Order scheme for general relativistic magnetohydrodynamics and
magnetodynamics, Astron. Astrophys., 473 (2007) 11-30.
[7] S. S. Doeleman, et al., Jet-Launching Structure Resolved Near the
Supermassive Black Hole in M87, Science, 338 (2012) 255-258. [8] H. Falcke, F. W. Hehl, The Galactic Black Hole - Lectures on general
relativity and astrophysics, IOP, London, 2003.
[9] J. A. Font, Numerical Hydrodynamics and Magnetohydrodynamics in
General Relativity, Living Rev. Relativity, 11 (2008).
[10] C. F. Gammie, J. C. McKinney, G. Toth, HARM: A numerical scheme
for general relativistic magnetohydrodynamics, Astrophys. J., 589
(2003) 444–457.
[11] R. O. Garcia, Métodos de Volumes Finitos Centrados unsplitting
utilizados na obtenção de soluções em Magnetohidrodinâmica:
aplicações em discos e jatos, thesis IMECC/UNICAMP, 2014.
[12] B. Giacomazzo, L. Rezzolla, WhiskyMHD: a new numerical code for
general relativistic magnetohydrodynamics, Class. Quantum Grav., 24
(2007) S235-S255, 2007.
[13] S. K. Godunov, A Finite Difference Method for the Computation of
Discontinuous Solutions of the Equations of Fluid Dynamics, Mat. Sb.,
47 (1959) 357-393.
[14] A. Harten, P. D. Lax, B. van Leer, On Upstream Differencing and
Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM
Review, 25 (1983) 35-61. 1983.
[15] W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent
Advection-Diffusion-Rection Equations, Springer, New York, 2003.
[16] S. Koide, K. Shibata, T. Kudoh, Relativistic Jet Formation from
Black Hole Magnetized Accretion Disk: Method, Test and Applications
of a General Relativistic Magnetohydrodynamic Numerical Code,
Astrophys. J., 522 (1999) 727-752.
[17] S. Koide, General relativistic plasmas around rotating black holes.
Procedings IAU Symposium, 275 (2011).
[18] S. S. Komissarov, et al., Magnetic acceleration of ultra-relativistic jets
in gamma-ray burst sources, Mon. Not. R. Astron. Soc., 394 (2009)
1182-1212.
[19] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems,
Cambridge University Press, New York, 2002.
[20] J. C. McKinney, R. D. Blandford, Stability of relativistic jets
from rotating, accreting black holes via fully three-dimensional
magnetohydrodynamic simulations, Mon. Not. R. Astron. Soc., 394
(2009) L126-L30.
[21] A. Mignone, J. C. McKinney, Equation of state in relativistic
magnetohydrodynamics: variable versus constant adiabatic index,
Mon. Not. R. Astron. Soc., 378 (2007) 1118-1130.
[22] P. Mösta, et al., GRHydro: A new open source general-relativistic
magnetohydrodynamics code for the Einstein Toolkit, Class. Quantum
Grav., 31 (2014).
[23] H. Nessyahu, E. Tadmor, Non-Oscillatory Central Differencing for
Hyperbolic Conservation Laws, J. Comput. Phys., 87 (1990) 408-463.
[24] K. -I. Nishikawa, et al., A General Relativistic Magnetohydrodynamic
Simulation of Jet Formation, Astrophys. J., 625 (2005) 60-71.
[25] W. H. Press, et al., Numerical Recipes in Fortran 90. Cambridge
University Press, Second Edtion, United States of American, 1997.
[26] M. J. D. Powell, Approximation theory and methods, Cambridge
University Press, Cambridge, 2001.
[27] V. Schneider, et al., New Algorithms for Ultra-relativistic Numerical
Hydrodynamics, J. Comp. Phys., vol. 105, n. 1, pp. 92-107, 1993.
[28] S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and
Neutron Stars - The Physics of Compact Objects, John Wiley & Sons,
New York, 1983.
[29] A. Tchekhovskoy, J. C. McKinney, R. Narayan, WHAM:
a WENO-based general relativistic numerical scheme – I.
Hydrodynamics, Mon. Not. R. Astron. Soc., 379 (2007) 469–497.
[30] J. W. Thomas, Numerical Partial Differential Equations: Finite
Difference Methods, Springer, New York, 1995.
[31] K. S. Thorne, R. H. Price, D. A. MacDonald, Black Holes: The
Membrane Paradigm, Yale University Press, New Haven, 1986.
[32] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid
Dynamics - A Practical Introduction, third edition, Springer, Germany,
2009.
[33] R. M. Wald, Black Hole in an uniform magnetic field, Phys. Rev. D,
10 (1974) 16-80.
[34] P. Woodward, P. Colella, The Numerical Simulation of
Two-Dimensional Fluid Flow with Strong Shocks, J. Comput.
Phys., 54 (1984) 115-173.