Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal

Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 ºC using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal.

Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. 

Bioleaching of Spent Catalyst using Moderate Thermophiles with Different Pulp Densities and Varying Size Fractions without Fe Supplemented Growth Medium

Bioleaching of spent catalyst using moderate thermophilic chemolithotrophic acidophiles in growth medium without Fe source was investigated with two different pulp densities and three different size fractions. All the experiments were conducted on shake flasks at a temperature of 65 °C. The leaching yield of Ni and Al was found to be promising with very high leaching yield of 92-96% followed by Al as 41-76%, which means both Ni and Al leaching were favored by the moderate thermophilic bioleaching compared to the mesophilic bioleaching. The acid consumption was comparatively higher for the 10% pulp density experiments. Comparatively minimal difference in the leaching yield with different size fractions and different pulp densities show no requirement of grinding and using low pulp density less than 10%. This process would rather be economical as well as eco-friendly process for future optimization of the recovery of metal values from spent catalyst.

Application of Acidithiobacillus ferrooxidans in Desulfurization of US Coal: 10 L Batch Stirred Reactor Study

The desulfurization of coal using biological methods is an emerging technology. The biodesulfurization process uses the catalytic activity of chemolithotrophic acidpohiles in removing sulfur and pyrite from the coal. The present study was undertaken to examine the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 10 L batch stirred tank reactor having 10% pulp density of coal. The reactor was operated under mesophilic conditions and aerobic conditions were maintained by sparging the air into the reactor. After 35 days of experiment, about 64% of pyrite and 21% of pyritic sulfur was removed from the coal. The findings of the present study indicate that the biodesulfurization process does have potential in treating the high pyrite and sulfur containing coal. A good mass balance was also obtained with net loss of about 5% showing its feasibility for large scale application.