Abstract: The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.
Abstract: The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.
Abstract: Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.
Abstract: Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.
Abstract: Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.
Abstract: Texture is an important characteristic in real and
synthetic scenes. Texture analysis plays a critical role in inspecting
surfaces and provides important techniques in a variety of
applications. Although several descriptors have been presented to
extract texture features, the development of object recognition is still a
difficult task due to the complex aspects of texture. Recently, many
robust and scaling-invariant image features such as SIFT, SURF and
ORB have been successfully used in image retrieval and object
recognition. In this paper, we have tried to compare the performance
for texture classification using these feature descriptors with k-means
clustering. Different classifiers including K-NN, Naive Bayes, Back
Propagation Neural Network , Decision Tree and Kstar were applied in
three texture image sets - UIUCTex, KTH-TIPS and Brodatz,
respectively. Experimental results reveal SIFTS as the best average
accuracy rate holder in UIUCTex, KTH-TIPS and SURF is
advantaged in Brodatz texture set. BP neuro network works best in the
test set classification among all used classifiers.
Abstract: In the past few years, high consumption of soft drinks
has attracted negative attention world-wide due to its possible
adverse effects, leading the health conscious people to find
alternative nutraceutical or herbal health drinks. In the present study,
a nutraceutical soft drink was developed utilizing some easily
available and well known traditional herbs having nutritional
potential. The key ingredients were selected as bael, amla, lemon
juice, ashwagandha and poppy seeds based on their household routine
use in the summer with proven refreshing, cooling and energetic
feeling since ages. After several trials made, the final composition of
nutraceutical summer soft drink was selected as most suitable
combination based on the taste, physicochemical, microbial and
organoleptic point of view. The physicochemical analysis of the
prepared drink found to contain optimum level of titratable acidity,
total soluble solids and pH which were in accordance of the
commercial recommendations. There were no bacterial colonies
found in the product therefore found within limits. During the nine
point’s hedonic scale sensory evaluation, the drink was strongly liked
for colour, taste, flavour and texture. The formulation was found to
contain flavonoids (80mg/100ml), phenolics (103mg/100ml), vitamin
C (250mg/100ml) and has antioxidant potential (75.52%) apart from
providing several other essential vitamins, minerals and healthy
components. The developed nutraceutical drink provides an
economical and feasible option for the consumers with very good
taste combined with potential health benefits. The present drink is
potentially capable to replace the synthetic soft drinks available in the
market.
Abstract: The objective of this study was to evaluate the
physical and chemical characteristics of Serra da Estrela cheese and
compare these results with those of the sensory analysis. For the
study were taken six samples of Serra da Estrela cheese produced
with 6 different ecotypes of thistle in a dairy situated in Penalva do
Castelo. The chemical properties evaluated were moisture content,
protein, fat, ash, chloride and pH; the physical properties studied
were color and texture; and finally a sensory evaluation was
undertaken. The results showed moisture varying in the range 40-
48%, protein in the range 15-20%, fat between 41-45%, ash between
3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied
from 4.8 to 5.4. The textural properties revealed that the crust
hardness is relatively low (maximum 7.3 N), although greater than
flesh firmness (maximum 1.7 N), and also that these cheeses are in
fact soft paste type, with measurable stickiness and intense
adhesiveness. The color analysis showed that the crust is relatively
light (L* over 50), and with a predominant yellow coloration (b*
around 20 or over) although with a slight greenish tone (a* negative).
The results of the sensory analysis did not show great variability for
most of the attributes measured, although some differences were
found in attributes such as crust thickness, crust uniformity, and
creamy flesh.
Abstract: Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure.
The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab.
Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.
Abstract: Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30oC for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores. Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.
Abstract: Textures of AZ31 Mg alloy sheets were evaluated by using neutron diffraction method in this study. The AZ31 sheets were fabricated either by conventional casting and subsequent hot rolling or strip casting. The effect of warm rolling was investigated using the AZ31 Mg alloy sheet produced by conventional casting. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure of conventionally cast specimen was found to be partially recrystallized structures. Grain refinement was found to occur actively during the warm rolling. The (0002),(10-10) (10-11),and (10-12) complete pole figures were measured using the HANARO FCD (Neutron Four Circle Diffractometer) and ODF were calculated. The major texture of all specimens can be expressed by ND//(0001) fiber texture. Texture of hot rolled specimen showed the strongest fiber component, while that of strip cast sheet seemed to be similar to random distribution.
Abstract: Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.
Abstract: The main purpose of this research aimed to create tactile texture designed media for the blind used for extra learning outside classrooms in order to enhance imagination of the blind about Himmapan creatures, furthermore, the main objective of the research focused on improving the visual disabled perception to be equal to normal people. The target group of the research is blinded students studying in The Bangkok school for the blind between grade 4-6 in the second semester of 2011 who are able to read the braille language. The research methodology consisted of the field study and the documentary study related to the blind, tactile texture designed media and Himmapan creatures. 10 pictures of tactile texture designed media were created in the designing process which began after the analysis had conducted based the primary and secondary data. The works had presented to experts in the visual disabled field who evaluated the works. After approval, the works used as prototype to teach the blind. KeywordsBlind, Himmapan Creatures, Tactile Texture.
Abstract: This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.
Abstract: This study investigated the use of modified
atmosphere packaging (MAP) and different packaging to extend the
shelf life of Barbari flat bread. Three atmospheres including 70%CO2
and 30%N2, 50% CO2 and 50%N2 and a normal air as control were
used. The bread samples were packaged in three type pouches. The
shelf life was determined by appearance of mold and yeast (M +Y) in
Barbari bread samples stored at 25 ± 1°C and 38 ± 2% relative
humidity. The results showed that it is possible to prolong the shelf
life of Barbari bread from four days to about 21 days by using
modified atmosphere packaging with high carbon dioxide
concentration and high-barrier laminated and vacuum bags packages.
However, the hardness of samples kept in MAP increase significantly
by increase of carbon dioxide concentration. The correlation
coefficient (r) between headspace CO2 concentration and hardness
was 0.997, 0.997 and 0.599 for A, B and C packaging respectively.
High negative correlation coefficients were found between the crumb
moisture and the hardness values in various packaging. There were
significant negative correlation coefficients between sensory
parameters and hardness of texture.
Abstract: In this paper, we proposed a method to classify each
type of natural rock texture. Our goal is to classify 26 classes of rock
textures. First, we extract five features of each class by using
principle component analysis combining with the use of applied
spatial frequency measurement. Next, the effective node number of
neural network was tested. We used the most effective neural
network in classification process. The results from this system yield
quite high in recognition rate. It is shown that high recognition rate
can be achieved in separation of 26 stone classes.
Abstract: The influence of full-fat soy flour (FFSF) and
extrusion conditions on the mechanical characteristics of dry
spaghetti were evaluated. Process was performed with screw speed of
10-40rpm and water circulating temperature of 35-70°C. Data
analysis using mixture design showed that this enrichment resulted in
significant differences in mechanical strength.
Abstract: Two different superhydrophobic surfaces were
elaborated and their oil repellency behavior was evaluated using
several liquid with different surface tension. A silicone rubber/SiO2
nanocomposite coated (A) on aluminum substrate by “spin-coating"
and the sample B was an anodized aluminum surface covered by
Teflon-like coating. A high static contact angle about ∼162° was
measured for two prepared surfaces on which the water droplet rolloff.
Scanning electron microscopy (SEM) showed the presence of
micro/nanostructures for both sample A and B similar to that of lotus
leaf.
However the sample A presented significantly different behaviour
of wettability against the low surface tension liquid. Sample A has
been wetted totally by oil (dodecan) droplet while sample B showed
oleophobic behaviour. Oleophobic property of Teflon like coating
can be contributed to the presence of CF2 and CF3 functional group
which was shown by XPS analysis.
Abstract: Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.
Abstract: Wavelet transform provides several important
characteristics which can be used in a texture analysis and
classification. In this work, an efficient texture classification method,
which combines concepts from wavelet and co-occurrence matrices,
is presented. An Euclidian distance classifier is used to evaluate the
various methods of classification. A comparative study is essential to
determine the ideal method. Using this conjecture, we developed a
novel feature set for texture classification and demonstrate its
effectiveness