Abstract: Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Abstract: The paper deals with the problems of the actual
behavior, failure mechanism and load-carrying capacity of the special
bolt connection developed and intended for the assembly connections
of truss main girders of perspective railway temporary steel bridges.
Within the framework of this problem solution, several types of
structural details of assembly joints have been considered as the
conceptual structural design. Based on the preliminary evaluation of
advantages or disadvantages of these ones, in principle two basic
structural configurations – so-called “tooth” and “splice-plate”
connections have been selected for the subsequent detailed
investigation. This investigation is mainly based on the experimental
verification of the actual behavior, strain and failure mechanism and
corresponding strength of the connection, and on its numerical
modeling using FEM. This paper is focused only on the cyclic
loading (fatigue) tests results of “splice-plate” connections and their
evaluation, which have already been finished. Simultaneously with
the fatigue tests, the static loading tests have been realized too, but
these ones, as well as FEM numerical modeling, are not the subject of
this paper.