Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Performance of the Strong Stability Method in the Univariate Classical Risk Model

In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.

Further Development in Predicting Post-Earthquake Fire Ignition Hazard

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Security Risk Analysis Based on the Policy Formalization and the Modeling of Big Systems

Security risk models have been successful in estimating the likelihood of attack for simple security threats. However, modeling complex system and their security risk is even a challenge. Many methods have been proposed to face this problem. Often difficult to manipulate, and not enough all-embracing they are not as famous as they should with administrators and deciders. We propose in this paper a new tool to model big systems on purpose. The software, takes into account attack threats and security strength.

An Approach to Improvement of Information Integrity in Key Areas of Portfolio Management

At a time of growing market turbulence and a strong shifts towards increasingly complex risk models and more stringent audit requirements, it is more critical than ever to maintain the highest quality of financial and credit information. IFC implemented an approach that helps increase data integrity and quality significantly. This approach is called “Screening". Screening is based on linking information from different sources to identify potential inconsistencies in key financial and credit data. That, in turn, can help to ease the trials of portfolio supervision, and improve overall company global reporting and assessment systems. IFC experience showed that when used regularly, Screening led to improved information.

Ruin Probabilities with Dependent Rates of Interest and Autoregressive Moving Average Structures

This paper studies ruin probabilities in two discrete-time risk models with premiums, claims and rates of interest modelled by three autoregressive moving average processes. Generalized Lundberg inequalities for ruin probabilities are derived by using recursive technique. A numerical example is given to illustrate the applications of these probability inequalities.