Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Developing Digital Competencies in Aboriginal Students through University-College Partnerships

This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.

Problem Based Learning in B. P. Koirala Institute of Health Sciences

Problem based learning is one of the highly acclaimed learning methods in medical education since its first introduction at Mc-Master University in Canada in the 1960s. It has now been adopted as a teaching learning method in many medical colleges of Nepal. B.P. Koirala Institute of Health Sciences (BPKIHS), a health science deemed university is the second institute in Nepal to establish problem-based learning academic program and need-based teaching approach hence minimizing teaching through lectures since its inception. During the first two years of MBBS course, the curriculum is divided into various organ-systems incorporated with problem-based learning exercise each of one week duration.

Use of a Learner's Log for Effective Self-Directed Learning in PBL

While the problem based learning (PBL) approach promotes unsupervised self-directed learning (SDL), many students experience difficulty juggling the role of being an information recipient and information seeker. Logbooks have been used to assess trainee doctors but not in other areas. This study aimed to determine the effectiveness of logbook for assessing SDL during PBL sessions in first year medical students. The log book included a learning checklist and knowledge and skills components. Comparisons with the baseline assessment of student performance in PBL and that at semester end after logbook intervention showed significant improvements in student performance (31.5 ± 8 vs. 17.7 ± 4.4; p

Project Base Learning for IT Personnel Resources Development using TVML

Using the animations video of teaching materials is an effective learning method. However, we thought that more effective learning method is to produce the teaching video by learners themselves. The learners who act as the producer must learn and understand well to produce and present video of teaching materials to others. The purpose of this study is to propose the project based learning (PBL) technique by co-producing video of IT (information technology) teaching materials. We used the T2V player to produce the video based on TVML a TV program description language. By proposed method, we have assigned the learners to produce the animations video for “National Examination for Information Processing Technicians (IPA examination)" in Japan, in order to get them learns various knowledge and skill on IT field. Experimental result showed that learning effect has occurred at the video production process that useful for IT personnel resources development.