Abstract: Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.
Abstract: The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.
Abstract: The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.
Abstract: Coal is an important non-renewable energy source of
and can be associated with radioactive elements. In Figueira city,
Paraná state, Brazil, it was recorded high uranium activity near the
coal mine that supplies a local thermoelectric power plant. In this
context, the radon activity (Rn-222, produced by the Ra-226 decay in
the U-238 natural series) was evaluated in groundwater, river water
and effluents produced from the acid mine drainage in the coal reject
dumps. The samples were collected in August 2013 and in February
2014 and analyzed at LABIDRO (Laboratory of Isotope and
Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha
spectrometer (AlphaGuard) adjusted to evaluate the mean radon
activity concentration in five cycles of 10 minutes. No radon activity
concentration above 100 Bq.L-1, which was a previous critic value
established by the World Health Organization. The average radon
activity concentration in groundwater was higher than in surface
water and in effluent samples, possibly due to the accumulation of
uranium and radium in the aquifer layers that favors the radon
trapping. The lower value in the river waters can indicate dilution and
the intermediate value in the effluents may indicate radon absorption
in the coal particles of the reject dumps. The results also indicate that
the radon activities in the effluents increase with the sample
acidification, possibly due to the higher radium leaching and the
subsequent radon transport to the drainage flow. The water samples
of Laranjinha River and Ribeirão das Pedras stream, which,
respectively, supply Figueira city and receive the mining effluent,
exhibited higher pH values upstream the mine, reflecting the acid
mine drainage discharge. The radionuclides transport indicates the
importance of monitoring their activity concentration in natural
waters due to the risks that the radioactivity can represent to human
health.
Abstract: A ten-year grazing study was conducted at the
Agriculture and Agri-Food Canada Brandon Research Centre in
Manitoba to study the effect of alfalfa inclusion and fertilizer (N, P,
K, and S) addition on economics and efficiency of non-renewable
energy use in meadow brome grass-based pasture systems for beef
production. Fertilizing grass-only or alfalfa-grass pastures to full soil
test recommendations improved pasture productivity, but did not
improve profitability compared to unfertilized pastures. Fertilizing
grass-only pastures resulted in the highest net loss of any pasture
management strategy in this study. Adding alfalfa at the time of
seeding, with no added fertilizer, was economically the best pasture
improvement strategy in this study. Because of moisture limitations,
adding commercial fertilizer to full soil test recommendations is
probably not economically justifiable in most years, especially with
the rising cost of fertilizer. Improving grass-only pastures by adding
fertilizer and/or alfalfa required additional non-renewable energy
inputs; however, the additional energy required for unfertilized
alfalfa-grass pastures was minimal compared to the fertilized
pastures. Of the four pasture management strategies, adding alfalfa
to grass pastures without adding fertilizer had the highest efficiency
of energy use. Based on energy use and economic performance, the
unfertilized alfalfa-grass pasture was the most efficient and
sustainable pasture system.