Abstract: Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.
Abstract: The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.
Abstract: Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.
Abstract: Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.
Abstract: Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.
Abstract: Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend.
Abstract: Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.
Abstract: Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.
Abstract: This paper deals with nonlinear vibration analysis
using finite element method for frame structures consisting of elastic
and viscoelastic damping layers supported by multiple nonlinear
concentrated springs with hysteresis damping. The frame is supported
by four nonlinear concentrated springs near the four corners. The
restoring forces of the springs have cubic non-linearity and linear
component of the nonlinear springs has complex quantity to represent
linear hysteresis damping. The damping layer of the frame structures
has complex modulus of elasticity. Further, the discretized equations in
physical coordinate are transformed into the nonlinear ordinary
coupled differential equations using normal coordinate corresponding
to linear natural modes. Comparing shares of strain energy of the
elastic frame, the damping layer and the springs, we evaluate the
influences of the damping couplings on the linear and nonlinear impact
responses. We also investigate influences of damping changed by
stiffness of the elastic frame on the nonlinear coupling in the damped
impact responses.
Abstract: The paper is focused on monitoring of dependencies
of different composition concretes on elastic modulus values.
To obtain a summary of elastic modulus development in dependence
of concrete composition design variability was the objective
of the experiment. Essential part of this work was initiated
as a reaction to building practice when questions of elastic moduli
arose at the same time and which mostly did not obtain the required
and expected values from concrete constructions.
Abstract: An innovative flooring underlayment was produced
and tested. The composite system is made of common OSB boards
and a layer of eco-friendly non-cement gypsum based material
(GeoGypTM). It was found that the shear bond between the two
materials is sufficient to secure the composite interaction between the
two. The very high compressive strength and relatively high tensile
strength of the non-cement based component together with its high
modulus of elasticity provides enough strength and stiffness for the
composite product to cover wider spacing between the joists. The
initial findings of this study indicate that with joist spacing as wide as
800 mm, the flooring system provides enough strength without
compromising the serviceability requirements of the building codes.
Abstract: The Cone Penetration Test (CPT) is a common in-situ
test which generally investigates a much greater volume of soil more
quickly than possible from sampling and laboratory tests. Therefore,
it has the potential to realize both cost savings and assessment of soil
properties rapidly and continuously. The principle objective of this
paper is to demonstrate the feasibility and efficiency of using
artificial neural networks (ANNs) to predict the soil angle of internal
friction (Φ) and the soil modulus of elasticity (E) from CPT results
considering the uncertainties and non-linearities of the soil. In
addition, ANNs are used to study the influence of different
parameters and recommend which parameters should be included as
input parameters to improve the prediction. Neural networks discover
relationships in the input data sets through the iterative presentation
of the data and intrinsic mapping characteristics of neural topologies.
General Regression Neural Network (GRNN) is one of the powerful
neural network architectures which is utilized in this study. A large
amount of field and experimental data including CPT results, plate
load tests, direct shear box, grain size distribution and calculated data
of overburden pressure was obtained from a large project in the
United Arab Emirates. This data was used for the training and the
validation of the neural network. A comparison was made between
the obtained results from the ANN's approach, and some common
traditional correlations that predict Φ and E from CPT results with
respect to the actual results of the collected data. The results show
that the ANN is a very powerful tool. Very good agreement was
obtained between estimated results from ANN and actual measured
results with comparison to other correlations available in the
literature. The study recommends some easily available parameters
that should be included in the estimation of the soil properties to
improve the prediction models. It is shown that the use of friction
ration in the estimation of Φ and the use of fines content in the
estimation of E considerable improve the prediction models.
Abstract: Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.
Abstract: The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.
Abstract: Modulus of elasticity is one of the important
parameters of construction materials, which considerably influence
their deformation properties and which can also be determined by
means of non-destructive test methods like ultrasonic pulse method.
However, measurement results of ultrasonic pulse methods are
influenced by various factors, one of which is the natural frequency
of the transducers. The paper states knowledge about influence of
natural frequency of the transducers (54; 82 and 150kHz) on
ultrasonic pulse velocity and dynamic modulus of elasticity (Young's
Dynamic modulus of elasticity). Differences between ultrasonic pulse
velocity and dynamic modulus of elasticity were found with the same
smallest dimension of test specimen in the direction of sounding and
density their value decreases as the natural frequency of transducers
grew.
Abstract: The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.
Abstract: The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.
Abstract: The suitability of Newsprint and Kraft papers for the production of cement bonded ceiling board was investigated. Sample boards were produced from newsprint paper (100%), mixture of newsprint and Kraft paper (50:50) and Kraft paper (100%) at 1:1, 2:1 and 3:1 cement/paper mixing ratio respectively with 3% additive concentration of calcium chloride (CaCl2). Density, flexural and thickness swelling properties of the boards were investigated. The effects of paper type and mixing ratio on the physical and mechanical properties were also examined. The bending properties of the board which include Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) increased linearly with increase in density. Modulus of rupture of boards increased as the density and mixing ratio increased. The thickness swelling property for the two paper types decreased as the board density and mixing ratio increased. Boards made from Kraft paper recorded higher strength values than the ones made from recycled newsprint paper while the mixture of kraft and newsprint papers had the best surface finish. The result of the study will help in managing the large quality of waste from paper converting/carton industry and that the ceiling boards produced could be installed with clout nails or used with suspended ceiling fittings.
Abstract: Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.
Abstract: A numerical method is proposed to calculate damping
properties for sound-proof structures involving elastic body,
viscoelastic body, and porous media. For elastic and viscoelastic body
displacement is modeled using conventional finite elements including
complex modulus of elasticity. Both effective density and bulk
modulus have complex quantities to represent damped sound fields in
the porous media. Particle displacement in the porous media is
discretised using finite element method. Displacement vectors as
common unknown variables are solved under coupled condition
between elastic body, viscoelastic body and porous media. Further,
explicit expressions of modal loss factor for the mixed structures are
derived using asymptotic method. Eigenvalue analysis and frequency
responded were calculated for automotive test panel laminated
viscoelastic and porous structures using this technique, the results
almost agreed with the experimental results.