Abstract: The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.
Abstract: Proper selection of welding parameters for getting
excellent weld is a challenge. HAZ simulation helps in identifying
suitable welding parameters like heating rate, cooling rate, peak
temperature, and energy input. In this study, the influence of weld
thermal cycle of heat affected zone (HAZ) is simulated for
Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical
simulator. A (Micro-alloyed) MA steel plate of thickness
18 mm having yield strength 450MPa is used for making test
specimens. Determination of the mechanical properties of weld
simulated specimens including Charpy V-notch toughness and
hardness is performed. Peak temperatures of 1300°C, 1150°C,
1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat
temperatures of 30°C have been used with Rykalin-3D simulation
model. It is found that the impact toughness (75J) is the best for the
simulated HAZ specimen at the peak temperature 900ºC. For parent
steel, impact toughness value is 26.8J at -50°C in transverse
direction.
Abstract: The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.
Abstract: Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Abstract: E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.
Abstract: Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed.
Abstract: In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.
Abstract: Effect of Zn addition on the microstructure and
mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10
weight percent was investigated in this study. Through calculation of
phase equilibria of Mg-Zn alloys, carried out by using FactSage® and
FTLite database, solution treatment temperature was decided as
temperatures from 300 to 400oC, where supersaturated solid solution
can be obtained. Solid solution treatment of Mg-Zn alloys was
successfully conducted at 380oC and supersaturated microstructure
with all beta phase resolved into matrix was obtained. After solution
treatment, hot rolling was successfully conducted by reduction of
60%. Compression and tension tests were carried out at room
temperature on the samples as-cast, solution treated, hot-rolled and
recrystallized after rolling. After solid solution treatment, each alloy
was annealed at temperatures of 180 and 200oC for time intervals from
1 min to 48 hrs and hardness of each condition was measured by
micro-Vickers method. Peak aging conditions were deduced as at the
temperature of 200oC for 10 hrs. By addition of Zn by 10 weight
percent, hardness and strength were enhanced.
Abstract: Microstructure and fabric of soils play an important
role on structural properties e.g. stiffness and strength of compacted
earthwork. Traditional quality control monitoring based on moisturedensity
tests neither reflects the variability of soil microstructure nor
provides a direct assessment of structural property, which is the
ultimate objective of the earthwork quality control. Since stiffness
and strength are sensitive to soil microstructure and fabric, any
independent test methods that provide simple, rapid, and direct
measurement of stiffness and strength are anticipated to provide an
effective assessment of compacted earthen materials’ uniformity. In
this study, the soil stiffness gauge (SSG) and the dynamic cone
penetrometer (DCP) were respectively utilized to measure and
monitor the stiffness and strength in companion with traditional
moisture-density measurements of various earthen materials used in
Thailand road construction projects. The practical earthwork quality
control criteria are presented herein in order to assure proper
earthwork quality control and uniform structural property of
compacted earthworks.
Abstract: In this study, thermal fatigue properties of 400 series
ferritic stainless steels have been evaluated in the temperature ranges
of 200-800oC and 200-900oC. Systematic methods for control of
temperatures within the predetermined range and measurement of load
applied to specimens as a function of temperature during thermal
cycles have been established. Thermal fatigue tests were conducted
under fully constrained condition, where both ends of specimens were
completely fixed. It has been revealed that load relaxation behavior at
the temperatures of thermal cycle was closely related with the thermal
fatigue property. Thermal fatigue resistance of 430J1L stainless steel
is found to be superior to the other steels.
Abstract: The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~
0.04) series cathode materials were synthesized by a carbonate
co-precipitation method, followed by a high temperature calcination
process. The influence of Al substitution on the microstructure and
electrochemical performances of the prepared materials was
investigated by X-Ray diffraction (XRD), scanning electron
microscopy (SEM), and galvanostatic charge/discharge test. The
results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered
hexagonal α-NaFeO2 structure. Although the discharge capacity of
Al-doped samples decreases as x increases,
LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at
high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a
promising material for “green” vehicles.
Abstract: This paper investigates the application of metallic
coatings on high fiber volume fraction carbon/epoxy polymer matrix
composites. For the grip of the metallic layer, a method of modifying
the surface of the composite by introducing a mixture of copper and
steel powder (filler powders) which can reduce the impact of thermal
spray particles. The powder was introduced to the surface at the time
of the forming. Arc spray was used to project the zinc coating layer.
The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are
characterized by optical microscopy, SEM and image analysis. The
samples were studied also in terms of hardness and erosion resistance.
This investigation did not reveal any visible evidence damage to the
substrates. The hardness of zinc layer was about 25.94 MPa and the
porosity was around (∼6.70%). The erosion test showed that the zinc
coating improves the resistance to erosion. Based on the results
obtained, we can conclude that thermal spraying allows the production
of protective coating on PMC. Zinc coating has been identified as a
compatible material with the substrate. The filler powders layer
protects the substrate from the impact of hot particles and allows
avoiding the rupture of brittle carbon fibers.
Abstract: The application of recycle waste tires into civil
engineering practices, namely asphalt paving mixtures and cementbased
materials has been gaining ground across the world. This
review summarizes and compares the recent achievements in the area
of plain rubberized concrete (PRC), in details. Different treatment
methods have been discussed to improve the performance of
rubberized Portland cement concrete. The review also includes the
effects of size and amount of tire rubbers on mechanical and
durability properties of PRC. The microstructure behaviour of the
rubberized concrete was detailed.
Abstract: Microstructure and mechanical properties of AZ91D
Mg alloys for nonflammable use, containing Ca and Y, were
investigated in this study. Solid solution treatment of AZ91D Mg alloy
with Ca and Y was successfully conducted at 420oC and
supersaturated microstructure with almost all beta phases resolved into
matrix was obtained. After solid solution treatment, the alloy was
annealed at temperatures of 180 and 200oC for time intervals from 1
min to 48 hrs and hardness of each condition was measured by
micro-Vickers method. Peak aging conditions were deduced from the
results as at the temperature of 200oC for 10 hrs. Hot rolling was also
carried out at 400oC by the reduction ratio of 0.6 through 5 passes
followed by recrystallization treatment. Tensile and compressive
properties were measured at room temperature on the specimens of
each process, i.e. as-cast, solution treatment, hot rolling, and
recrystallization.
Abstract: Concrete is an essential building material which is
widely used in construction industry all over the world due to its
compressible strength. Curing of concrete plays a vital role in
durability and other performance necessities. Improper curing can
affect the concrete performance and durability easily. When areas
like scarcity of water, structures is not accessible by humans external
curing cannot be performed, so we opt for internal curing. Internal
curing (or) self curing plays a major role in developing the concrete
pore structure and microstructure. The concept of internal curing is to
enhance the hydration process to maintain the temperature uniformly.
The evaporation of water in the concrete is reduced by self curing
agent (Super Absorbing Polymer – SAP) there by increasing the
water retention capacity of the concrete. The research work was
carried out to reduce water, which is prime material used for concrete
in the construction industry. Concrete curing plays a major role in
developing hydration process. Concept of self curing will reduce the
evaporation of water from concrete. Self curing will increase water
retention capacity as compared to the conventional concrete. Proper
self curing (or) internal curing increases the strength, durability and
performance of concrete. Super absorbing Polymer (SAP) used as
internal curing agent. In this study 0.2% to 0.4% of SAP was varied
in different grade of high strength concrete. In the experiment
replacement of cement by silica fumes with 5%, 10% and 15% are
studied. It is found that replacement of silica fumes by 10 % gives
more strength and durability when compared to others.
Abstract: In this current contribution, authors are dedicated to
investigate influence of the crystal lamellae orientation on
electromechanical behaviors of relaxor ferroelectric Poly
(vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene)
(P(VDF-TrFE-CTFE)) films by control of polymer microstructure,
aiming to picture the full map of structure-property relationship. In
order to define their crystal orientation films, terpolymer films were
fabricated by solution-casting, stretching and hot-pressing process.
Differential scanning calorimetry, impedance analyzer, and tensile
strength techniques were employed to characterize crystallographic
parameters, dielectric permittivity, and elastic Young’s modulus
respectively. In addition, large electrical induced out-of-plane
electrostrictive strain was obtained by cantilever beam mode.
Consequently, as-casted pristine films exhibited surprisingly high
electrostrictive strain 0.1774% due to considerably small value of
elastic Young’s modulus although relatively low dielectric
permittivity. Such reasons contributed to large mechanical elastic
energy density. Instead, due to 2 folds increase of elastic Young’s
modulus and less than 50% augmentation of dielectric constant, fullycrystallized
film showed weak electrostrictive behavior and
mechanical energy density as well. And subjected to mechanical
stretching process, Film C exhibited stronger dielectric constant and
out-performed electrostrictive strain over Film B because edge-on
crystal lamellae orientation induced by uniaxially mechanical stretch.
Hot-press films were compared in term of cooling rate. Rather large
electrostrictive strain of 0.2788% for hot-pressed Film D in
quenching process was observed although its dielectric permittivity
equivalent to that of pristine as-casted Film A, showing highest
mechanical elastic energy density value of 359.5 J/m3. In hot-press
cooling process, dielectric permittivity of Film E saw values at 48.8
concomitant with ca.100% increase of Young’s modulus. Films with
intermediate mechanical energy density were obtained.
Abstract: This paper presents the effects of mixing procedures
on mechanical properties of flyash-based geopolymer matrices
containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by weight.
Comparison is made with conventional mechanical dry-mixing of NS
with flyash and wet-mixing of NS in alkaline solutions. Physical and
mechanical properties are investigated using X-Ray Diffraction
(XRD) and Scanning Electron Microscope (SEM). Results show that
generally the addition of NS particles enhanced the microstructure
and improved flexural and compressive strengths of geopolymer
nanocomposites. However, samples, prepared using dry-mixing
approach, demonstrate better physical and mechanical properties
comparing to wet-mixing samples.
Abstract: Geopolymer composites reinforced with flax fabrics
and nanoclay are fabricated and studied for physical and mechanical
properties using X-Ray Diffraction (XRD), Fourier Transform
Infrared Spectroscopy (FTIR), and Scanning Electron Microscope
(SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were
added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to
improve density and decrease porosity while improving flexural
strength and post-peak toughness. A microstructural analysis
indicated that nanoclay behaves as filler and as an activator
supporting geopolymeric reaction while producing a higher content
geopolymer gel improving the microstructure of binders. The process
enhances adhesion between the geopolymer matrix and flax fibres.
Abstract: Pure nickel coatings have been successfully
electrodeposited on copper substrates by the pulse plating technique.
The influence of current density, duty cycle and pulse frequency on
the surface morphology, crystal orientation, and microhardness was
determined. It was found that the crystallite size of the deposit
increases with increasing current density and duty cycle. The crystal
orientation progressively changed from a random texture at 1 A/dm2
to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in
increased texture coefficient and peak intensity of (111) reflection.
An increase in duty cycle resulted in considerable increase in texture
coefficient and peak intensity of (311) reflection. Coatings obtained
at high current densities and duty cycle present a mixed morphology
of small and large grains. Maximum microhardness of 193 Hv was
achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings
with (200) texture are ductile while (111) texture improves the
microhardness of the coatings.
Abstract: Friction stir welding and tungsten inert gas welding
techniques were employed to weld armor grade aluminum alloy to
investigate the effect of welding processes on tensile behavior of
weld joints. Tensile tests, Vicker microhardness tests and optical
microscopy were performed on developed weld joints and base metal.
Welding process influenced tensile behavior and microstructure of
weld joints. Friction stir welded joints showed tensile behavior better
than tungsten inert gas weld joints.