Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends

In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts.  First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°.  Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).

A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery

This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.