A Neuroscience-Based Learning Technique: Framework and Application to STEM

Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.

Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Investigation of Possible Behavioural and Molecular Effects of Mobile Phone Exposure on Rats

The N-methyl-D-aspartate (NMDA)-dependent pathway is the major intracellular signaling pathway implemented in both short- and long-term memory formation in the hippocampus which is the most studied brain structure because of its well documented role in learning and memory. However, little is known about the effects of RF-EMR exposure on NMDA receptor signaling pathway including activation of protein kinases, notably Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα). The aim of the present study was to investigate the effects of acute and chronic 900 MHz RF-EMR exposure on both passive avoidance behaviour and hippocampal levels of CaMKIIα and its phosphorylated form (pCaMKIIα). Rats were divided into the following groups: Sham rats, and rats exposed to 900 MHz RF-EMR for 2 h/day for 1 week (acute group) or 10 weeks (chronic group), respectively. Passive avoidance task was used as a behavioural method. The hippocampal levels of selected kinases were measured using Western Blotting technique. The results of passive avoidance task showed that both acute and chronic exposure to 900 MHz RF-EMR can impair passive avoidance behaviour with minor effects on chronic group of rats. The analysis of western blot data of selected protein kinases demonstrated that hippocampal levels of CaMKIIα and pCaMKIIα were significantly higher in chronic group of rats as compared to acute groups. Taken together, these findings demonstrated that different duration times (1 week vs 10 weeks) of 900 MHz RF-EMR exposure have different effects on both passive avoidance behaviour of rats and hippocampal levels of selected protein kinases.

Apoptosis Inspired Intrusion Detection System

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Memory and Higher Cognition

Working memory (WM) can be defined as the system which actively holds information in the mind to do tasks in spite of the distraction. Contrary, short-term memory (STM) is a system that represents the capacity for the active storing of information without distraction. There has been accumulating evidence that these types of memory are related to higher cognition (HC). The aim of this study was to verify the relationship between HC and memory (visual STM and WM, auditory STM and WM). 59 primary school children were tested by intelligence test, mathematical tasks (HC) and memory subtests. We have shown that visual but not auditory memory is a significant predictor of higher cognition. The relevance of these results are discussed.