Construction Port Requirements for Floating Offshore Wind Turbines

s the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating offshore wind turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment, inter array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of size of substructures, height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However, part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost effective equipment which can be assembled in port and towed to site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment on shore means minimising highly weather dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space. The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed; however the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Proposals for the Thermal Regulation of Buildings in Algeria: An Energy Label for Social Housing

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The RTB (Thermal Building Regulation) is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modeling in Frustum Confining Vessel

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vessel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firuzkuh, Iran. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Analysing the Changes of the Tourist Functions of the Seaside Resorts with the Growth in the Number of Second Homes

Since the beginning of the 21st century, we have been observing in some seaside resorts aging demography, combined with an increase in second homes. These seaside resorts are said to have become places undergoing profound changes, leading to hybridization of functions (personal services, health, residential, etc.) and practices. All of these issues are part of the challenges of silver tourism, which stems from the silver economy. The Hauts-de-France region is made up of numerous seaside resorts that have a significant proportion of second homes in their real estate stock. The seaside resorts have tourist offers based on sports and leisure activities. They also offer a suitable environment for the installation of this category of the population. This set of attractive criteria in the choice of installation in seaside resorts is likely to be replaced by personal and health services due to the advanced age of the population. The resorts of Le Touquet Paris-Plage, Bray-Dunes, Neufchâtel-Hardelot and Le Crotoy seem to be evolving towards other functions of residential resorts, as opposed to seaside resorts This paper will be an opportunity to present the results of the surveys we conducted in 4 seaside resorts in the Hauts-de-France region, where more than 420 retired secondary residents were questioned. The results show that nearly 90% of retirees spend their time in their second home at any time of the year. The criteria that lead them there are school vacations and the weather. More than 40% of them have been living there for more than 20 years. The reasons for the installations are the living environment (83%) and the quality of life (79%). Their activities are walking and strolling, as well as sports. More than 99% of the respondents do not take into account the health service offers. Personal services are also little taken into account - around 60% of respondents say they do not know whether personal services exist in the resort. 80% of respondents answer that their grandchildren benefit from activities organized by the commune and the tourist offices during their stay. To conclude, the influx of retired secondary residents will not lead to a change in the functions of the seaside resorts. Their classic tourist offers - leisure and sports activities, the environment - will remain the attractive criteria of the seaside resorts.  The results of the study prove that personal services and health services are not the first choice criteria in the installation of retired secondary residents, quite the contrary. We can even complete that retirees in secondary residences are demanding and concerned about living in a calm, safe and clean environment and quality of life.

Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea

This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.

Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region

Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.

Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications

Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application.

Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment

The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.

Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

The Current Home Hemodialysis Practices and Patients’ Safety Related Factors: A Case Study from Germany

The increasing costs of healthcare on one hand, and the rise in aging population and associated chronic disease, on the other hand, are putting increasing burden on the current health care system in many Western countries. For instance, chronic kidney disease (CKD) is a common disease and in Europe, the cost of renal replacement therapy (RRT) is very significant to the total health care cost. However, the recent advancement in healthcare technology, provide the opportunity to treat patients at home in their own comfort. It is evident that home healthcare offers numerous advantages apparently, low costs and high patients’ quality of life. Despite these advantages, the intake of home hemodialysis (HHD) therapy is still low in particular in Germany. Many factors are accounted for the low number of HHD intake. However, this paper is focusing on patients’ safety-related factors of current HHD practices in Germany. The aim of this paper is to analyze the current HHD practices in Germany and to identify risks related factors if any exist. A case study has been conducted in a dialysis center which consists of four dialysis centers in the south of Germany. In total, these dialysis centers have 350 chronic dialysis patients, of which, four patients are on HHD. The centers have 126 staff which includes six nephrologists and 120 other staff i.e. nurses and administration. The results of the study revealed several risk-related factors. Most importantly, these centers do not offer allied health services at the pre-dialysis stage, the HHD training did not have an established curriculum; however, they have just recently developed the first version. Only a soft copy of the machine manual is offered to patients. Surprisingly, the management was not aware of any standard available for home assessment and installation. The home assessment is done by a third party (i.e. the machines and equipment provider) and they may not consider the hygienic quality of the patient’s home. The type of machine provided to patients at home is similar to the one in the center. The model may not be suitable at home because of its size and complexity. Even though portable hemodialysis machines, which are specially designed for home use, are available in the market such as the NxStage series. Besides the type of machine, no assistance is offered for space management at home in particular for placing the machine. Moreover, the centers do not offer remote assistance to patients and their carer at home. However, telephonic assistance is available. Furthermore, no alternative is offered if a carer is not available. In addition, the centers are lacking medical staff including nephrologists and renal nurses.

Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems

The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.

Design and Analysis of Annular Combustion Chamber for a Micro Turbojet Engine

The design of high performance combustion chambers for turbojet engines is considered as one of the most challenges that face gas turbine designers, since the design approach depends on empirical correlations of data derived from the previous design experiences. The objective of this paper is to design a combustion chamber that suits the requirements of a micro-turbojet engine with 400 N output thrust and operates with kerosene as fuel. In this paper, only preliminary calculations related to the annular type of combustion chamber are explained in details. These calculations will cover the evaluation of reference quantities, calculation of required dimensions, calculation of air distribution and pressure drop, estimation of number and diameters for air admission holes, as well as aerodynamic considerations. The design process is then accompanied by analytical procedure using commercial CFD ANALYSIS tool; ANSYS 16 CFX software. After conducting CFD analysis, the design process will be then iterated in order to gain satisfactory results. It should be noted that the design of the fuel preparation and installation systems is beyond the scope of this work, and it will be discussed separately in another work.