An Effect of Organic Supplements on Stimulating Growth of Dendrobium Protocorms and Seedlings

This study was aimed to investigate the effect of various organic supplements on growth and development of Dendrobium discolor’s protocorms and seedlings growth of Dendrobium Judy Rutz. Protocorms of Dendrobium discolor with 2.0 cm. in diameter and seedlings of Dendrobium Judy Rutz at the same size (0.5 cm. height) were sub-cultured on Hyponex medium supplemented with cow milk (CM), soy milk (SM), potato extract (PE) and peptone (P) for 2 months. The protocorms were developed to seedlings in all treatments after cultured for 2 months. However, the best results were found on Hyponex medium supplemented with P was the best in which the maximum fresh and dry weight and maximum shoot height were obtained in this treatment statistically different (p ≤ 0.05) to other treatments. Moreover, Hyponex medium supplemented with P also stimulated the maximum mean number of 5.7 shoots per explant which also showed statistically different (p ≤ 0.05) when compared to other treatments. The results of growth of Dendrobium Judy Rutz seedlings indicated the medium supplemented with 100 mL/L PE enhanced the maximum fresh and dry weigh per explants with significantly different (p ≤ 0.05) in fresh weight from other treatments including the control medium without any organic supplementation. However, the dry weight was not significantly different (p ≤ 0.05) from medium supplemented with SM and P. There was multiple shoots induction in all media with or without organic supplementation ranging from 2.6 to 3 shoots per explants. The maximum shoot height was also obtained in the seedlings cultured on medium supplemented with PE while the longest root length was found in medium supplemented with SM.

An Effect of Organic Supplements on Stimulating Growth of Vanda and Mokara Seedlings in Tissue Culture

This study aimed to investigate effect of different organic supplements on growth of Vanda and Mokara seedlings. Vanda and Mokara seedlings approximately 0.2 and 0.3 cm. in height were sub-cultured onto VW supplemented with 150 ml/L coconut water, 100 g/L potato extract, 100 g/L ‘Gros Michel’ banana (AAA group) and 100 g/L ‘Namwa’ banana (ABB group). The explants were sub-cultured onto the same medium every month for 3 months. The best medium increased stem height to 0.52 and 0.44 Cm. in Vanda and Mokara respectively was supplemented with coconut water. The maximum fresh weight of Vanda (0.59 g) was found on medium supplemented with ‘Gros Michel’ banana while Mokara cultured on medium supplemented with Potato extract had the maximum fresh weight (0.27 g) and number of roots (5.20 roots/shoot) statistically different (p≤ 0.05) to other treatments. However, Vanda cultured on medium supplemented with ‘Namwa’ banana had the maximum number of roots (3.80 roots/shoot). Our results suggested that growth of different orchid genera was responded diversely to different organic supplements.   

In vitro Propagation of Purple Nutsedge (Cyperus rotundus L.) for Useful Chemical Extraction

The in vitro culture procedure of purple nutsedge (Cyperus rotundus L.) for multiple shoot induction and tuber formation was established. Multiple shoots were significantly induced from a single shoot of about 0.5 – 0.8 cm long, on Murashige and Skoog (MS) medium supplemented with 4.44 μM 6- benzyladinine (BA) alone or in combination with 2.85 μM 1- indoleacetic acid (IAA), providing 17.6 and 15.3 shoots per explant with 31.2 and 27.5 leaves per explant, respectively, within 6 weeks of culturing. Moreover, MS medium supplemented with 4.44 μM BA and 2.85 μM IAA was suitable for tuber induction, obtaining 5.9 tubers with 3.4 rhizomes per explant. In combination with ancymidol and higher concentration of sucrose, 11.1 μM BA and 60 g/L sucrose or 11.1 μM BA, 7.8 μM ancymidol and 60 g/L sucrose induced 3.5 tubers with 1.6 rhizomes or 3.5 tubers without rhizome, respectively. However, MS medium containing 3.9 or 7.8 μM ancymidol in combination with either 60 or 80 g/L sucrose enchanced significant root formation at 20.9 – 23.6 roots per explant.