Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides

One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.

Impact of Herbicides on Soil Biology in Rapeseed

Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.

Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass

The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha-1 + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1 + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1), atrazine + tembotrione (1.25 + 0.100 kg ha-1) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control.

Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive

To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (Hordeum spontaneum C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive.

The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary

Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too. The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.

The Residual Effects of Different Doses of Atrazine+Alachlor and Foramsulfuron on the Growth and Physiology of Rapeseed (Brassica napus L.)

A pot experiment was carried out under controlled conditions to evaluate the residual effects of different doses of atrazine+alachlor and foramsulfuron used in corn fields on the growth and physiology of rapeseed (Brassica napus L.). A split-plot experiment in CRD with 4 replications was used. The main plots consisted of herbicide type (atrazine+alachlor mixture and foramsulfuron) and the sub-plots were different residual doses of the herbicides (0, 1%, 5%, 10%, 20%, 40%, 50% and 100%). 7 cm diameter pots were filled with a virgin soil and seeds of rapeseed cv. Hayola were planted in them. The pots were kept under controlled conditions for 8 weeks after germination. At harvest, the growth parameters and the chlorophyll contents of the leaves were determined. The results showed that the growth of rapeseed plants was completely prevented at the highest residual doses of the herbicides (50 and 100 %). The growth parameters of rapeseed plants were affected by all doses of both types of the herbicide as compared to the controls. The residual effects of atrazine+alachlor mixture in reducing the growth parameters of rapeseed were more pronounced as compared to the residual effects of foramsulfuron alone.

Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.

On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Effect of Herbicides on Narrow Leaved Weeds and Yield of Wheat (Triticum aestivum L.)

This study was conducted to investigate the efficacy of five herbicides on narrow leaved weeds and growth and yield of wheat. An experiment was conducted at Agronomic Research Farm, University of Agriculture Faisalabad. The experiment was laid out in randomized complete block designee (RCBD) with three replications. Treatments studied were clodinafop (Topic-15 WG) at 37 g a.i. ha-1, clodinafop (Topaz-15 WG) at 45 g a.i. ha-1, fenoxaprop-p-ethyl (Puma Super-75 EW) at 45 g a.i. ha-1, fenoxaprop-p-ethyl (Gramicide-6.9 EW) at 85 g a.i. ha-1, fenoxaprop-p-ethyl (Chinlima-6.9 EW) at 85 g a.i. ha-1 and weedy check. Plots treated with fenoxaprop-p-ethyl (Puma Super-75 EW) at 45 g a.i. ha-1 produced relatively less weed biomass, more plant height, number of spike bearing tillers, number of grains per spike, 1000-grain weight and grain yield (4.20 t ha-1).

Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China

BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.