Some Biochemical Changes Followed Experimental Gastric Ulceration

Gastric ulceration is a discontinuity in gastric mucosa, usually occurs due to imbalance between the gastric mucosal protective factors, that is called gastric mucosal barrier, and the aggressive factors, to which the mucosa is exposed. This study was carried out on sixty male Sprague-Dowely rats (12- 16 weeks old) allocated into two groups. The first control group and the second Gastric lesion group which induced by oral administration of a single daily dose of aspirin at a dose of 300 mg/kg body weight for 7 consecutive-days (6% aspirin solution will be prepared and each rat will be given 5 ml of that solution/kg body weight). Blood is collected 1, 2 and 3 weeks after induction of gastric ulceration. Significant increase in serum copper, nitric oxide, and prostaglandin E2 all over the period of experiment. Significant decrease in erythrocyte superoxide dismutase (t-SOD) activities, serum (calcium, phosphorus, glucose and insulin) levels. Non-significant changes in serum sodium and potassium levels are obtained.

Effects of Bay Leaves on Blood Glucose and Lipid Profiles on the Patients with Type 1 Diabetes

Bay leaves have been shown to improve insulin function in vitro but the effects on people have not been determined. The objective of this study was to determine if bay leaves may be important in the prevention and/or alleviation of type 1 diabetes. Methods: Fifty five people with type 1 diabetes were divided into two groups, 45 given capsules containing 3 g of bay leaves per day for 30 days and 10 given a placebo capsules. Results All the patients consumed bay leaves shows reduced serum glucose with significant decreases 27% after 30 d. Total cholesterol decreased, 21 %, after 30 days with larger decreases in low density lipoprotein (LDL) 24%. High density lipoprotein (HDL) increased 20% and Triglycerides also decreased 26%. There were no significant changes in the placebo group. Conclusion, this study demonstrates that consumption of bay leaves, 3 g/d for 30 days, decreases risk factors for diabetes and cardiovascular diseases and suggests that bay leaves may be beneficial for people with type 1 diabetes.

Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows

Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p =0.130). Cows in the 35-d DP produced more milk protein and SNF compare with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.

A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Optimization of Two-Stage Pretreatment Combined with Microwave Radiation Using Response Surface Methodology

Pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugar that used for biobutanol production. Among pretreatment processes, microwave is considered to improve pretreatment efficiency due to its high heating efficiency, easy operation, and easily to combine with chemical reaction. The main objectives of this work are to investigate the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of corncobs and to determine the optimal conditions using response surface methodology. Corncobs were pretreated via two-stage pretreatment in dilute sodium hydroxide (2 %) followed by dilute sulfuric acid 1 %. Pretreated corncobs were subjected to enzymatic hydrolysis to produce reducing sugar. Statistical experimental design was used to optimize pretreatment parameters including temperature, residence time and solid-to-liquid ratio to achieve the highest amount of glucose. The results revealed that solid-to-liquid ratio and temperature had a significant effect on the amount of glucose.

Investigation of Anti-diabetic and Hypocholesterolemic Potential of Psyllium Husk Fiber (Plantago psyllium) in Diabetic and Hypercholesterolemic Albino Rats

The present study was conducted to observe the effect of Plantago psyllium on blood glucose and cholesterol levels in normal and alloxan induced diabetic rats. To investigate the effect of Plantago psyllium 40 rats were included in this study divided into four groups of ten rats in each group. One group A was normal, second group B was diabetic, third group C was non diabetic and hypercholesterolemic and fourth group D was diabetic and hypercholesterolemic. Two groups B and D were made diabetic by intraperitonial injection of alloxan dissolved in 1mL distilled water at a dose of 125mg/Kg of body weight. Two groups C and D were made hypercholesterolemic by oral administration of powder cholesterol (1g/Kg of body weight). The blood samples from all the rats were collected from coccygial vein on 1st day, then on 21st and 42nd day respectively. All the samples were analyzed for blood glucose and cholesterol level by using enzymatic kits. The blood glucose and cholesterol levels of treated groups of rats showed significant reduction after 7 weeks of treatment with Plantago psyllium. By statistical analysis of results it was found that Plantago psyllium has anti-diabetic and hypocholesterolemic activity in diabetic and hypercholesterolemic albino rats.

Novel D- glucose Based Glycomonomers Synthesis and Characterization

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

Study of Effect Different of Ozone Doses on Sugars Content in Tomatoes at Different Stages of Ripening

The determination of sugars in foods is very significant. Their relation in fact, can affect the chemical and sensorial quality of the matrix (e.g., sweetness, pH, total acidity, microbial stability, global acceptability) and can provide information on food to optimize several selected technological processes. Three stages of ripeness (green, yellow and red) of tomatoes (Lycopersicon Esculentum cv. Elegance) at different harvest dates were evaluated. Fruit from all harvests were exposed to different of ozone doses (0.25, 0.50 and 1 mg O3/g tomatoes) and clean air for 5 day at 15 °C±2 and 90-95 % relative humidity. Then, fruits were submitted for extraction and analysis after a day from the finish of exposure of each stage. The concentrations of the glucose and fructose increased in the tomatoes which were subjected to ozone treatments.

Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.

Determination of Effective Variables on Arachidonic Acid Production by Mortierella alpina CBS 754.68in Solid-State Fermentation using Plackett-Burman Screening Design

In the present study, the oleaginous fungus Mortierella alpina CBS 754.68 was screened for arachidonic acidproduction using inexpensive agricultural by-products as substrate. Four oilcakes were analysed to choose the best substrate among them. Sunflower oilcake was the most effective substrate for ARA production followed by soybean, colza and olive oilcakes. In the next step, seven variables including substrate particle size, moisture content, time, temperature, yeast extract supply, glucose supply and glutamate supply were surveyed and effective variables for ARA production were determined using a Plackett-Burman screening design. Analysis results showed that time (12 days), substrate particle size (1-1.4 mm) and temperature (20ºC) were the most effective variables for the highest level of ARA production respectively.

Reducing Sugar Production from Durian Peel by Hydrochloric Acid Hydrolysis

Agricultural waste is mainly composed of cellulose and hemicelluloses which can be converted to sugars. The inexpensive reducing sugar from durian peel was obtained by hydrolysis with HCl concentration at 0.5-2.0% (v/v). The hydrolysis range of time was for 15-60 min when the mixture was autoclaved at 121 °C. The result showed that acid hydrolysis efficiency (AHE) highest to 80.99% at condition is 2.0%concentration for 15 min. Reducing sugar highest to 56.07 g/litre at condition is 2.0% concentration for 45min. Total sugar highest to 59.83 g/litre at condition is 2.0%concentration for 45min, which was not significant (p < 0.05) with condition 2.0% concentration for 30 min and 1.5 % concentration for 45 and 60 min. The increase in concentration increased AHE, reducing sugar and total sugar. The hydrolysis time had no effect on AHE, reducing sugar and total sugar. The maximum reducing sugars of each concentration were at hydrolysis time 45 min .The hydrolysated were analysis by HPLC, the results revealed that the principle of sugar were glucose, fructose and xylose.

Effect of Process Parameters on Aerobic Decolourization of Reactive Azo Dye using Mixed Culture

In the present study, an attempt was made to examine the potential of aerobic mixed culture for decolourization of Remazol Black B dye in batch reactors. The effect of pH, temperature, inoculum, initial concentration of dye and initial concentration of glucose was studied with an aim to determine the optimal conditions required for maximum decolourization and degradation. The culture exhibited maximum decolourization ability at pH between 7-8 and at 30°C. A 10% (v/v) inoculum and 1% (w/v) glucose concentration were found to be the optimum for decolourization. A maximum of 98% decolourization was observed at 25 ppm initial concentration of dye after 18 hours of incubation period. At higher dye concentration of 300 ppm, the removal in colour was found to be 75% in 48 hours of incubation period. The results show that the enriched mixed culture from activated sludge has good potential in removal of Remazol Black B dye from wastewater under aerobic conditions.

Investigation of Pre-Treatment Parameters of Rye and Triticale for Bioethanol Production

This paper presents the new results of energy plant – rye and triticale at yellow ripeness and ripe, pre-treatment in high pressure steam reactor and monosaccharide extraction. There were investigated the influence of steam pressure (20 to 22 bar), retention duration (180 to 240 s) and catalytic sulphuric acid concentration strength (0 to 0.5 %) on the pre-treatment process, contents of monosaccharides (glucose, arabinose, xylose, mannose) and undesirable by-compounds (furfural and HMF) in the reactor. The study has determined that the largest amount of monosaccharides (37.2 % of glucose, 2.7 % of arabinose, 8.4 % of xylose, and 1.3 % of mannose) was received in the rye at ripe, the samples of which were mixed with 0.5 % concentration of catalytic sulphuric acid, and hydrolysed in the reactor, where the pressure was 20 bar, whereas the reaction time – 240 s.

Serum Nitric Oxide and Sialic Acid: Possible Biochemical Markers for Progression of Diabetic Nephropathy

This study was designed to investigate the role of serum nitric oxide and sialic acid in the development of diabetic nephropathy as disease marker. Total 210 diabetic patients (age and sex matched) were selected followed by informed consent and divided into four groups (70 each) as I: control; II: diabetic; III: diabetic hypertensive; IV: diabetic nephropathy. The blood samples of all subjects were collected and analyzed for serum nitric oxide, sialic acid, fasting blood glucose, serum urea, creatinine, HbA1c and GFR. The BMI, systolic and diastolic blood pressures, blood glucose, HbA1c and serum sialic acid levels were high (p

Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Hypoglycemic Activity of Water Soluble Polysaccharides of Yam (Dioscorea hispida Dents) Prepared by Aqueous, Papain, and Tempeh Inoculum Assisted Extractions

This research studied the hypoglycemic effect of water soluble polysaccharide (WSP) extracted from yam (Dioscorea hispida) tuber by three different methods: aqueous extraction, papain assisted extraction, and tempeh inoculums assisted extraction. The two later extraction methods were aimed to remove WSP binding protein to have more pure WSP. The hypoglycemic activities were evaluated by means in vivo test on alloxan induced hyperglycemic rats, glucose response test (GRT), in situ glucose absorption test using everted sac, and short chain fatty acids (SCFAs) analysis. All yam WSP extracts exhibited ability to decrease blood glucose level in hyperglycemia condition as well as inhibited glucose absorption and SCFA formation. The order of hypoglycemic activity was tempeh inoculums assisted- >papain assisted- >aqueous WSP extracts. GRT and in situ glucose absorption test showed that order of inhibition was papain assisted- >tempeh inoculums assisted- >aqueous WSP extracts. Digesta of caecum of yam WSP extracts oral fed rats had more SCFA than control. Tempeh inoculums assisted WSP extract exhibited the most significant hypoglycemic activity.

Statistical Optimization of Enzymatic Hydrolysis of Potato (Solanum tuberosum) Starch by Immobilized α-amylase

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of Potato starch powder (of mesh 80/120) into glucose syrup by immobilized (using Sodium arginate) α-amylase using central composite design. The experimental result on enzymatic hydrolysis of Potato starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of Potato starch by α-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p ≤ 0.01). The optimum value of starch concentration, enzyme concentration, temperature, time and were found to be 6% (w/v), 2% (w/v), 40°C and 80min respectively. The maximum glucose yield at optimum condition was 2.34 mg/mL.

Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate

Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.

The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (10μm and original) were digested with a-amylase using a dialysis model. Granules of 10μm (p10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Effects of Intrauterine and Extrauterine Exposure to 1800 MHz GSM-Like Radiofrequency Radiation on Liver Regulatory Enzymes Activities in Infant Female Rabbits

In the present study, we aimed to design the intrauterine and extrauterine exposure to 1800 MHz GSM-like RF radiation and investigate its possible bio-effects on infant female rabbits. Totally thirty-six New Zealand White female rabbits, onemonth old, were randomly divided into four groups which are composed of 9 rabbits; i. Group I [Intrauterine (IU) exposure(-); Extrauterine (EU) exposure (-)], Group II [IU exposure (-); EU exposure (+)], Group III [IU exposure(+);EU exposure(-)], Group IV [IU exposure (+);EU exposure(+)]. The master regulatory enzymes activities of pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G-6PD; 6-phosphogluconate dehydrogenase, 6- PGDH) and glutathione-dependent metabolism (glutathione peroxidase, GSH-Px; glutathione reductase, GR; glutathione Stransferase, GST, thioredoxin reductase, TRx) were analyzed in liver tissues of young female rabbits. Decreased G-6PD, 6-PGD, GSH-Px, GR activities were found in Group III compared to Group I (p