Abstract: Chitosans, CSs, in solution are increasingly used in a range of geometric properties in various academic and industrial sectors, especially in the domain of pharmaceutical and biomedical engineering. In order to provide a tailoring guide of CSs to the applicants, gamma (γ)-irradiation technology and simple viscosity measurements have been used in this study. Accordingly, CS solid discs (0.5 cm thickness and 2.5 cm diameter) were exposed in air to Cobalt-60 (γ)-radiation, at room temperature and constant 50 kGy dose for different periods of exposer time (tγ). Diluted solutions of native and different irradiated CS were then prepared by dissolving 1.25 mg cm-3 of each polymer in 0.1 M NaCl/0.2 M CH3COOH. The single-concentration relative viscosity (ƞr) measurements were employed to obtain their intrinsic viscosity ([ƞ]) values and interrelated parameters, like: the molar mass (Mƞ), hydrodynamic radiuses (RH,ƞ), radius of gyration (RG,ƞ), and second virial coefficient (A2,ƞ) of CSs in the solution. The results show an exponential decrease of ƞr, [ƞ], Mƞ, RH,ƞ and RG,ƞ with increasing tγ. This suggests the influence of random chain-scission of CSs glycosidic bonds, with rate constant kr and kr-1 (lifetime τr ~ 0.017 min-1 and 57.14 min, respectively). The results also show an exponential decrease of A2ƞ with increasing tγ, which can be attributed to the growth of excluded volume effect in CS segments by tγ and, hence, better solution quality. The results are represented in following scaling laws as a tailoring guide to the applicants: RH,ƞ = 6.98 x 10-3 Mr0.65; RG,ƞ = 7.09 x 10-4 Mr0.83; A2,ƞ = 121.03 Mƞ,r-0.19.
Abstract: Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the 70's until today and has generated significant styles such as deconstructivism and parametricism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.
Abstract: By using the two existing operators, we have defined an operator, which is an extension for them. In this paper, first the operator is introduced. Then, using this operator, the subclasses of multivalent functions are defined. These subclasses of multivalent functions are utilized in order to obtain coefficient inequalities, extreme points, and integral means inequalities for functions belonging to these classes.
Abstract: In this paper, we propose a method for detecting
circular shapes with subpixel accuracy. First, the geometric properties
of circles have been used to find the diameters as well as the
circumference pixels. The center and radius are then estimated by the
circumference pixels. Both synthetic and real images have been tested
by the proposed method. The experimental results show that the new
method is efficient.
Abstract: The conventional GA combined with a local search
algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA)
for the traveling salesman problem (TSP). However, the geometric
properties which are problem specific knowledge can be used to
improve the search process of the HGA. Some tour segments (edges)
of TSPs are fine while some maybe too long to appear in a short tour.
This knowledge could constrain GAs to work out with fine tour
segments without considering long tour segments as often.
Consequently, a new algorithm is proposed, called intelligent-OPT
hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT
algorithm in order to reduce the search time for the optimal solution.
Based on the geometric properties, all the tour segments are assigned
2-level priorities to distinguish between good and bad genes. A
simulation study was conducted to evaluate the performance of the
IOHGA. The experimental results indicate that in general the IOHGA
could obtain near-optimal solutions with less time and better accuracy
than the hybrid genetic algorithm with simulated annealing algorithm
(HGA(SA)).
Abstract: The previous researches focused on the influence of
anthropogenic greenhouse gases exerting global warming, but not
consider whether desert sand may warm the planet, this could be
improved by accounting for sand's physical and geometric properties.
Here we show, sand particles (because of their geometry) at the desert
surface form an extended surface of up to 1 + π/4 times the planar area
of the desert that can contact sunlight, and at shallow depths of the
desert form another extended surface of at least 1 + π times the planar
area that can contact air. Based on this feature, an enhanced heat
exchange system between sunlight, desert sand, and air in the spaces
between sand particles could be built up automatically, which can
increase capture of solar energy, leading to rapid heating of the sand
particles, and then the heating of sand particles will dramatically heat
the air between sand particles. The thermodynamics of deserts may
thus have contributed to global warming, especially significant to
future global warming if the current desertification continues to
expand.
Abstract: In the present article, nonlinear vibration analysis of
single layer graphene sheets is presented and the effect of small
length scale is investigated. Using the Hamilton's principle, the three
coupled nonlinear equations of motion are obtained based on the von
Karman geometrical model and Eringen theory of nonlocal
continuum. The solutions of Free nonlinear vibration, based on a one
term mode shape, are found for both simply supported and clamped
graphene sheets. A complete analysis of graphene sheets with
movable as well as immovable in-plane conditions is also carried out.
The results obtained herein are compared with those available in the
literature for classical isotropic rectangular plates and excellent
agreement is seen. Also, the nonlinear effects are presented as
functions of geometric properties and small scale parameter.
Abstract: Modeling of Panel Zone (PZ) seismic behavior,
because of its role in overall ductility and lateral stiffness of steel
moment frames, has been considered a challenge for years. There are
some studies regarding the effects of different doubler plates
thicknesses and geometric properties of PZ on its seismic behavior.
However, there is not much investigation on the effects of number of
provided continuity plates in case of presence of one triangular
haunch, two triangular haunches and rectangular haunch (T shape
haunches) for exterior columns. In this research first detailed finite
element models of 12tested connection of SAC joint venture were
created and analyzed then obtained cyclic behavior backbone curves
of these models besides other FE models for similar tests were used
for neural network training. Then seismic behavior of these data is
categorized according to continuity plate-s arrangements and
differences in type of haunches. PZ with one-sided haunches have
little plastic rotation. As the number of continuity plates increases
due to presence of two triangular haunches (four continuity plate),
there will be no plastic rotation, in other words PZ behaves in its
elastic range. In the case of rectangular haunch, PZ show more plastic
rotation in comparison with one-sided triangular haunch and
especially double-sided triangular haunches. Moreover, the models
that will be presented in case of triangular one-sided and double-
sided haunches and rectangular haunches as a result of this study
seem to have a proper estimation of PZ seismic behavior.