Design and Analysis of Low-Power, High Speed and Area Efficient 2-Bit Digital Magnitude Comparator in 90nm CMOS Technology Using Gate Diffusion Input

Digital magnitude comparators based on Gate Diffusion Input (GDI) implementation technique are high speed and area-efficient, and they consume less power as compared to other implementation techniques. However, they are less efficient for some logic gates and have no full voltage swing. In this paper, we made a performance comparison between the GDI implementation technique and other implementation methods, such as Static CMOS, Pass Transistor Logic (PTL), and Transmission Gate (TG) in 90 nm, 120 nm, and 180 nm CMOS technologies using BSIM4 MOS model. We proposed a methodology (hybrid implementation) of implementing digital magnitude comparators which significantly improved the power, speed, area, and voltage swing requirements. Simulation results revealed that the hybrid implementation of digital magnitude comparators show a 10.84% (power dissipation), 41.6% (propagation delay), 47.95% (power-delay product (PDP)) improvement compared to the usual GDI implementation method. We used Microwind & Dsch Version 3.5 as well as the Tanner EDA 16.0 tools for simulation purposes.

Design and Implementation of 4 Bit Multiplier Using Fault Tolerant Hybrid Full Adder

The fault tolerant system plays a crucial role in the critical applications which are being used in the present scenario. A fault may change the functionality of circuits. Aim of this paper is to design multiplier using fault tolerant hybrid full adder. Fault tolerant hybrid full adder is designed to check and repair any fault in the circuit using self-checking circuit and the self-repairing circuit. Further, the use of conventional logic circuits may result in more area, delay as well as power consumption. In order to reduce these parameters of the circuit, GDI (Gate Diffusion Input) techniques with less number of transistors are used compared to conventional full adder circuit. This reduces the area, delay and power consumption. The proposed method solves the major problems occurring in the most crucial and critical applications.