Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose

The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a DiagNose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained.

Nanocrystalline Na0.1V2O5.nH2O Xerogel Thin Film for Gas Sensing

Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol gel synthesis was used as gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130oC to 150oC show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.