Abstract: Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.
Abstract: Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.
Abstract: Green concrete are generally composed of recycling
materials as hundred or partial percent substitutes for aggregate,
cement, and admixture in concrete. To reduce greenhouse gas
emissions, efforts are needed to develop environmentally friendly
construction materials. Using of fly ash based geopolymer as an
alternative binder can help reduce CO2 emission of concrete. The
binder of geopolymer concrete is different from the ordinary Portland
cement concrete. Geopolymer Concrete specimens were prepared
with different concentration of NaOH solution M10, M14, and, M16
and cured at 60ºC in duration of 24 hours and 8 hours, in addition to
the curing in direct sunlight. Thus, it is necessary to study the effects
of the geopolymer binder on the behavior of concrete. Concrete is
made by using geopolymer technology is environmental friendly and
could be considered as part of the sustainable development. In this
study, the Local Alkaline Activator in Egypt and crashed stone as
coarse aggregate in fly ash based-geopolymer concrete was
investigated. This paper illustrates the development of mechanical
properties. Since the gained compressive strength for geopolymer
concrete at 28 days was in the range of 22.5MPa – 43.9MPa.
Abstract: Fly ash (FA) thanks to the significant presence of SiO2
and Al2O3 as the main components is a potential raw material for
geopolymers production. Mechanical activation is a method for
improving FA reactivity and also the porosity of final mixture; those
parameters can be analysed through sorption properties. They have
direct impact on the durability of fly ash based geopolymer mortars.
In the paper, effect of FA fineness on sorption properties of
geopolymers based on sodium silicate, as well as relationship
between fly ash fineness and apparent density, compressive and
flexural strength of geopolymers are presented. The best results in the
evaluated area reached the sample H1, which contents the highest
portion of particle under 20μm (100% of GFA). The interdependence
of individual tested properties was confirmed for geopolymer
mixtures corresponding to those in the cement based mixtures: higher
is portion of fine particles < 20μm, higher is strength, density and
lower are sorption properties. The compressive strength as well as
sorption parameters of the geopolymer can be reasonably controlled
by grinding process and also ensured by the higher share of fine
particle (to 20μm) in total mass of the material.
Abstract: This paper presents the findings of an
experimental investigation to study the effect of alkali content
in geopolymer mortar specimens exposed to sulphuric acid.
Geopolymer mortar specimens were manufactured from Class F fly
ash by activation with a mixture of sodium hydroxide and sodium
silicate solution containing 5% to 8% Na2O. Durability of specimens
were assessed by immersing them in 10% sulphuric acid solution and
periodically monitoring surface deterioration and depth of
dealkalization, changes in weight and residual compressive strength
over a period of 24 weeks. Microstructural changes in the specimens
were studied with Scanning electron microscopy (SEM) and EDAX.
Alkali content in the activator solution significantly affects the
durability of fly ash based geopolymer mortars in sulphuric acid.
Specimens manufactured with higher alkali content performed better
than those manufactured with lower alkali content. After 24 weeks in
sulphuric acid, specimen with 8% alkali still recorded a residual
strength as high as 55%.