A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.

The Determination of Aflatoxins in Paddy and Milled Fractions of Rice in Guyana: Preliminary Results

A survey was conducted in the five rice-growing regions in Guyana to determine the presence of aflatoxins in multiple fractions of rice in June/October 2015 growing season. The fractions were paddy, steamed paddy, cargo rice, white rice and parboiled rice. Samples were analyzed by High Performance Liquid Chromatography. A subset of the samples was further analyzed by enzyme-linked immunosorbent assay (ELISA) for concurrence. All analyses were conducted at the University of Missouri, USA. Of the 186 samples tested, 16 had aflatoxin concentrations greater than 20 ppb the recommended limit for aflatoxins in food according to the United States Food and Drug Administration. An additional three samples had aflatoxin B1 concentrations greater than the European Union Commission maximum levels for aflatoxin B1 in rice at 5 µg/kg and total aflatoxins (B1, B2, G1 and G2) at 10 µg/kg. The survey indicates that there is no widespread aflatoxin problem in rice in Guyana. The incidence of aflatoxins appears to be localized.

Aflatoxins Aggravate the Incidence of Salmonellosis Outbreak in Fattening Calves: A Case Study

Fever, bloody diarrhea and high mortality rate were the main clinical finding in a group of fattening calves. Analysis of corn silage revealed presence of aflatoxins at level of 370 ppb. This level of aflatoxins in the feed of cattle is somewhat low to be the main cause of reported signs. Leukocytopenia, anemia, decreased lymphocytic activity and lowered phagocytic index are the main hematological and immunological alterations in diseased calves. Bacteriological investigation revealed isolation of pathogenic Salmonella typhimurium from the rectal swabs of diseased calves. Our results suggested that, long duration of exposure to aflatoxins even at small concentrations may considered as predisposing factor for the incidence of natural infectious outbreaks as salmonellosis due to its immunosuppressive effect. We can conclude that the veterinarians and owners must be given an attention to the relation between aflatoxicosis and salmonellosis under field condition. We are recommended that the treatment program during similar outbreaks must be including anti-aflatoxins preparations beside the antimicrobial therapy.

Effect of Commercial or Bovine Yeasts on the Performance and Blood Variables of Broiler Chickens Intoxicated with Aflatoxins

The effects of commercial or bovine yeasts on the performance and blood variables of broiler chickens intoxicated with aflatoxin were investigated in broilers. Four hundred eighty broilers (Arbor Acres; 3-wk-old) were randomly assigned to 4 groups. Each group (120 broiler chickens) was further randomly divided into 6 replicates of 20 chickens. The treatments were control diet without additives (treatment 1), 250 ppb AFB1 (treatment 2), commercial yeast, Saccharomyces cerevisiae, (CY 2.5 x 107 CFU/g) + 250 ppb AFB1 (treatment 3) and bovine yeast, Saccharomyces cerevisiae, (BY 2.5 x 107 CFU/g + 250 ppb AFB1 (treatment 4). Complete randomized design (CRD) was used in the experiment. Feed consumption and body weight were recorded at every five-day period. On day 42, carcass compositions were determined from 30 birds per treatment. While chicks were sacrificed, 3-4 ml blood sample was taken and stored frozen at (-20°C) for serum chemical analysis to determine effects of consumption of diets on blood chemistry (total protein, albumin, glucose, urea, cholesterol and triglycerides). There were no significant differences in ADFI among the treatments(P>0.05). However, BWG, FCR and mortality were highly significantly different (P

Analysis of Roasted and Ground Grains on the Seoul (Korea) Market for Their Contaminants of Aflatoxins, Ochratoxin A and Fusarium Toxins by LC-MS/MS

A sensitive and specific method for quantitative determination of aflatoxins(B1, B2, G1,G2), deoxynivalenol, fumonisin(B1,B2), ochratoxin A, zearalenone, T-2 and HT-2 in roasted and ground grains using liquid chromatography combined with tandem mass spectrometry. A double extraction using a phosphate buffer solution followed by methanol was applied to achieve effective co extraction of 11 mycotoxins. A multitoxin immunoaffinity column for all these mycotoxins was used to clean up the extract. The LODs of mycotoxins were 0.1~6.1 μg/kg, LOQs were 0.3~18.4 μg/kg. Forty seven samples collected from Seoul (Korea) for mycotoxin contamination monitoring. The results showed that the occurrence of zearalenone and deoxynivalenol were frequent. Zearalenone was detected in all samples and deoxynivalenol was detected in 80.9 % samples in the range 0.626 ~ 29.264 μg/kg and N.D ~ 48.332 μg/kg respectively. Fumonisins and ochratoxin A were detected in 46.8% samples and 17 % samples respectively, aflatoxins and T-2/HT-2 toxins were not detected all samples.

Pervasiveness of Aflatoxin in Peanuts Growing in the Area of Pothohar, Pakistan

Mycotoxin (aflatoxins) contamination of peanuts is a great concern for human health. A total of 72 samples of unripe, roasted, and salty peanuts were collected randomly from Pothohar plateau of Pakistan for the assessment of aflatoxin. Samples were dried, ground and extracted by acetonitrile (84%). The filtered extracts were cleaned up by MycoSep-226 and analyzed by high performance liquid chromatography with flourescence detector. Quantification limit of Aflatoxin was 1 μg/kg and 70% Recovery was observed in spiked samples in the range 1–10 μg/kg. The screening of mycotoxins indicated that aflatoxins were present in most of the samples being detected in 82%, in concentrations from 14.25 μg/kg to 98.80 μg/kg. Optimal conditions for mycotoxin production and fungal growth are frequently found in the crop fields as well as in store houses. Human exposure of such toxin can be controlled by pointed out such awareness and implemented the regulations.