Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

A Bathtub Curve from Nonparametric Model

This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.

A Combined Approach of a Sequential Life Testing and an Accelerated Life Testing Applied to a Low-Alloy High Strength Steel Component

Sometimes the amount of time available for testing could be considerably less than the expected lifetime of the component. To overcome such a problem, there is the accelerated life-testing alternative aimed at forcing components to fail by testing them at much higher-than-intended application conditions. These models are known as acceleration models. One possible way to translate test results obtained under accelerated conditions to normal using conditions could be through the application of the “Maxwell Distribution Law.” In this paper we will apply a combined approach of a sequential life testing and an accelerated life testing to a low alloy high-strength steel component used in the construction of overpasses in Brazil. The underlying sampling distribution will be three-parameter Inverse Weibull model. To estimate the three parameters of the Inverse Weibull model we will use a maximum likelihood approach for censored failure data. We will be assuming a linear acceleration condition. To evaluate the accuracy (significance) of the parameter values obtained under normal conditions for the underlying Inverse Weibull model we will apply to the expected normal failure times a sequential life testing using a truncation mechanism. An example will illustrate the application of this procedure.

A New Brazilian Friction-Resistant Low Alloy High Strength Steel – A Life Testing Approach

In this paper we will develop a sequential life test approach applied to a modified low alloy-high strength steel part used in highway overpasses in Brazil.We will consider two possible underlying sampling distributions: the Normal and theInverse Weibull models. The minimum life will be considered equal to zero. We will use the two underlying models to analyze a fatigue life test situation, comparing the results obtained from both.Since a major chemical component of this low alloy-high strength steel part has been changed, there is little information available about the possible values that the parameters of the corresponding Normal and Inverse Weibull underlying sampling distributions could have. To estimate the shape and the scale parameters of these two sampling models we will use a maximum likelihood approach for censored failure data. We will also develop a truncation mechanism for the Inverse Weibull and Normal models. We will provide rules to truncate a sequential life testing situation making one of the two possible decisions at the moment of truncation; that is, accept or reject the null hypothesis H0. An example will develop the proposed truncated sequential life testing approach for the Inverse Weibull and Normal models.

The Impact of Upgrades on ERP System Reliability

Constant upgrading of Enterprise Resource Planning (ERP) systems is necessary, but can cause new defects. This paper attempts to model the likelihood of defects after completed upgrades with Weibull defect probability density function (PDF). A case study is presented analyzing data of recorded defects obtained for one ERP subsystem. The trends are observed for the value of the parameters relevant to the proposed statistical Weibull distribution for a given one year period. As a result, the ability to predict the appearance of defects after the next upgrade is described.

Further Thoughtson a Sequential Life Testing Approach Using an Inverse Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Inverse Weibull sampling distribution. The location parameter or minimum life will be considered equal to zero. Once again we will provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new electronic component. There is little information available about the possible values the parameters of the corresponding Inverse Weibull underlying sampling distribution could have.To estimate the shape and the scale parameters of the underlying Inverse Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Appling Eyring-s Accelerated Life Testing Model to “Times to Breakdown“ of Insulating Fluid: A Combined Approach of an Accelerated and a Sequential Life Testing

In this paper, the test purpose will be to assess whether or not the accelerated model proposed by Eyring will be able to translate results for the shape and scale parameters of an underlying Weibull model, obtained under two accelerating using conditions, to expected normal using condition results for these parameters. The product being analyzed is a new type of insulate fluid, and the accelerating factor is the voltage stresses applied to the fluid at two different levels (30KV and 40KV). The normal operating voltage is 25KV. In this case, it was possible to test the insulate fluid at normal voltage using condition. Both results for the two parameters of the Weibull model, obtained under normal using condition and translated from accelerated using conditions to normal conditions, will be compared to each other to assess the accuracy of the Eyring model when the accelerating factor is only the voltage stress.

Additional Considerations on a Sequential Life Testing Approach using a Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Weibull sampling distribution. The minimum life will be considered equal to zero. We will again provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new type of a low alloy-high strength steel product. To estimate the shape and the scale parameters of the underlying Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.