Abstract: Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Abstract: This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Abstract: This paper presents a self-sustaining mobile system for
counting and classification of vehicles through processing video. It
proposes a counting and classification algorithm divided in four steps
that can be executed multiple times in parallel in a SBC (Single
Board Computer), like the Raspberry Pi 2, in such a way that it
can be implemented in real time. The first step of the proposed
algorithm limits the zone of the image that it will be processed.
The second step performs the detection of the mobile objects using
a BGS (Background Subtraction) algorithm based on the GMM
(Gaussian Mixture Model), as well as a shadow removal algorithm
using physical-based features, followed by morphological operations.
In the first step the vehicle detection will be performed by using
edge detection algorithms and the vehicle following through Kalman
filters. The last step of the proposed algorithm registers the vehicle
passing and performs their classification according to their areas.
An auto-sustainable system is proposed, powered by batteries and
photovoltaic solar panels, and the data transmission is done through
GPRS (General Packet Radio Service)eliminating the need of using
external cable, which will facilitate it deployment and translation to
any location where it could operate. The self-sustaining trailer will
allow the counting and classification of vehicles in specific zones
with difficult access.
Abstract: With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management.
This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.