Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

This research was conducted in the Mae Sot Watershed where located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urban area in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recent years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood events in 2013 as the worst studied case for all those communities in this municipality. Moreover, other problems are also faced in this watershed, such shortage water supply for domestic consumption and agriculture utilizations including a deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of the appropriated application of some short period rainfall forecasting model as they aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in a short period of 7-10 days in advance during rainy season instead of real time record. The IDV product can be present in an advance period of rainfall with time step of 3-6 hours was introduced to the communities. The result can be used as input data to the hydrologic modeling system model (HEC-HMS) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as the water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at the dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfying. The product of rainfall from IDV was fair while compared with observed data. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Streamflow Modeling for a Small Watershed Using Limited Hydrological Data

This research was conducted in the Pua Watershed whereas located in the Upper Nan River Basin in Nan province, Thailand. Nan River basin originated in Nan province that comprises of many tributary streams to produce as inflow to the Sirikit dam provided huge reservoir with the storage capacity of 9510 million cubic meters. The common problems of most watersheds were found i.e. shortage water supply for consumption and agriculture utilizations, deteriorate of water quality, flood and landslide including debris flow, and unstable of riverbank. The Pua Watershed is one of several small river basins that flow through the Nan River Basin. The watershed includes 404 km2 representing the Pua District, the Upper Nan Basin, or the whole Nan River Basin, of 61.5%, 18.2% or 1.2% respectively. The Pua River is a main stream producing all year streamflow supplying the Pua District and an inflow to the Upper Nan Basin. Its length approximately 56.3 kilometers with an average slope of the channel by 1.9% measured. A diversion weir namely Pua weir bound the plain and mountainous areas with a very steep slope of the riverbed to 2.9% and drainage area of 149 km2 as upstream watershed while a mild slope of the riverbed to 0.2% found in a river reach of 20.3 km downstream of this weir, which considered as a gauged basin. However, the major branch streams of the Pua River are ungauged catchments namely: Nam Kwang and Nam Koon with the drainage area of 86 and 35 km2 respectively. These upstream watersheds produce runoff through the 3-streams downstream of Pua weir, Jao weir, and Kang weir, with an averaged annual runoff of 578 million cubic meters. They were analyzed using both statistical data at Pua weir and simulated data resulted from the hydrologic modeling system (HEC–HMS) which applied for the remaining ungauged basins. Since the Kwang and Koon catchments were limited with lack of hydrological data included streamflow and rainfall. Therefore, the mathematical modeling: HEC-HMS with the Snyder-s hydrograph synthesized and transposed methods were applied for those areas using calibrated hydrological parameters from the upstream of Pua weir with continuously daily recorded of streamflow and rainfall data during 2008-2011. The results showed that the simulated daily streamflow and sum up as annual runoff in 2008, 2010, and 2011 were fitted with observed annual runoff at Pua weir using the simple linear regression with the satisfied correlation R2 of 0.64, 062, and 0.59, respectively. The sensitivity of simulation results were come from difficulty using calibrated parameters i.e. lag-time, coefficient of peak flow, initial losses, uniform loss rates, and missing some daily observed data. These calibrated parameters were used to apply for the other 2-ungauged catchments and downstream catchments simulated.