Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition

This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.

Treatment of Spin-1/2 Particle in Interaction with a Time-Dependent Magnetic Field by the Fermionic Coherent-State Path-Integral Formalism

We consider a spin-1/2 particle interacting with a time-dependent magnetic field using path integral formalism. The propagator is first of all written in the standard form replacing the spin by two fermionic oscillators via the Schwinger model. The propagator is then exactly determined, thanks to a simple transformation, and the transition probability is deduced.

Absolute Cross Sections of Multi-Photon Ionization of Xenon by the Comparison with Process of its Electron-Impact Ionization

Comparison of electron- and photon-impact processes as a method for determination of photo-ionization cross sections is described, discussed and shown to have many attractive features.

Topological Properties of an Exponential Random Geometric Graph Process

In this paper we consider a one-dimensional random geometric graph process with the inter-nodal gaps evolving according to an exponential AR(1) process. The transition probability matrix and stationary distribution are derived for the Markov chains concerning connectivity and the number of components. We analyze the algorithm for hitting time regarding disconnectivity. In addition to dynamical properties, we also study topological properties for static snapshots. We obtain the degree distributions as well as asymptotic precise bounds and strong law of large numbers for connectivity threshold distance and the largest nearest neighbor distance amongst others. Both exact results and limit theorems are provided in this paper.

One scheme of Transition Probability Evaluation

In present work are considered the scheme of evaluation the transition probability in quantum system. It is based on path integral representation of transition probability amplitude and its evaluation by means of a saddle point method, applied to the part of integration variables. The whole integration process is reduced to initial value problem solutions of Hamilton equations with a random initial phase point. The scheme is related to the semiclassical initial value representation approaches using great number of trajectories. In contrast to them from total set of generated phase paths only one path for each initial coordinate value is selected in Monte Karlo process.