Fuzzy Logic Speed Controller with Reduced Rule Base for Dual PMSM Drives

Dual motor drives fed by single inverter is purposely designed to reduced size and cost with respect to single motor drives fed by single inverter. Previous researches on dual motor drives only focus on the modulation and the averaging techniques. Only a few of them, study the performance of the drives based on different speed controller other than Proportional and Integrator (PI) controller. This paper presents a detailed comparative study on fuzzy rule-base in Fuzzy Logic speed Controller (FLC) for Dual Permanent Magnet Synchronous Motor (PMSM) drives. Two fuzzy speed controllers which are standard and simplified fuzzy speed controllers are designed and the results are compared and evaluated. The standard fuzzy controller consists of 49 rules while the proposed controller consists of 9 rules determined by selecting the most dominant rules only. Both designs are compared for wide range of speed and the robustness of both controllers over load disturbance changes is tested to demonstrate the effectiveness of the simplified/reduced rulebase.

Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Software Digital Phase-locked Loop for Induction Motor Speed Control

This article deals to describe the simulation investigation of the digital phase locked loop implemented in software (SDPLL). SDPLL has been developed for speed drives of an induction motor in scalar strategy. A drive was implemented and simulation results are presented to verify the robustness against motor parameter variation and regulation speed.

State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.