A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding

Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.

Coding of DWT Coefficients using Run-length Coding and Huffman Coding for the Purpose of Color Image Compression

In present paper we proposed a simple and effective method to compress an image. Here we found success in size reduction of an image without much compromising with it-s quality. Here we used Haar Wavelet Transform to transform our original image and after quantization and thresholding of DWT coefficients Run length coding and Huffman coding schemes have been used to encode the image. DWT is base for quite populate JPEG 2000 technique.