Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space

In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.

Robot Path Planning in 3D Space Using Binary Integer Programming

This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.

Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target

This paper presents a new sensor-based online method for generating collision-free near-optimal paths for mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, first the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle and target, forming the Directive Circle (DC), which is a novel concept. Then, a direction close to the shortest path to the target is selected from feasible directions in DC. The DC prevents the robot from being trapped in deadlocks or local minima. It is assumed that the target's velocity is known, while the speeds of dynamic obstacles, as well as the locations of static obstacles, are to be calculated online. Extensive simulations and experimental results demonstrated the efficiency of the proposed method and its success in coping with complex environments and obstacles.