Whooeaism: A Concept of Origin of Religion among the Jarawas of Andaman Islands, India

The concept and practice of whooeaism exist among the Jarawas of Andaman Islands of India. The Jarawas are one of the simplest populations of the world and truly represent the hunting and food gathering stage. The study is conducted among the Jarawas of Kadamtala region, which is situated approximately in the western part of the south and middle Andaman Islands, India. The Jarawa tribe belongs to Negrito race and is one of the particularly vulnerable tribal groups of the Andaman Islands. The present study is based on 45 Jarawas of Kadamtala region. The observations have been conducted through the semi-participant observation method and informal interview method. It has been observed that there are neither any beliefs and practices related to supernatural power nor any concept related to the soul, manaism, demonology, totemism, animatism etc. They only have faith on Whooea, i.e., a small bone of their deceased ancestors and they wear it by the help of a bark band around the neck and shoulder or around the waist, especially during hunting or fishing and food gathering time. The Jarawas either keep the whooea in higher places or hang it and they make sure that it must not touch the earth. The beliefs and practices related to whooea may be designated as Whooeaism. It may be concluded that in of spite of various existing theories related to the origin of religion viz. Animism, Animatism, Manaism and totemism and others, the origin of religion initially developed from the Whooeaism and then other concepts of religion evolved gradually by the manifestation of human beliefs and assumptions.

Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Ischemic events can culminate in acute myocardial infarction with irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Tissue engineering proposes therapeutic alternatives by using biomaterials to resemble the native extracellular medium combined with healthy and functional cells. This research focused on developing a natural thermosensitive hydrogel, its physical-chemical characterization and in vitro biocompatibility determination. Hydrogels’ morphological characterization was carried out through scanning electron microscopy and its chemical characterization by employing Infrared Spectroscopy technic. In addition, the biocompatibility was determined using fetal human ventricular cardiomyocytes cell line RL-14 and the MTT cytotoxicity test according to the ISO 10993-5 standard. Four biocompatible and thermosensitive hydrogels were obtained with a three-dimensional internal structure and two gelation times. The results show the potential of the hydrogel to increase the cell survival rate to the cardiac cell therapies under investigation and lay the foundations to continue with its characterization and biological evaluation both in vitro and in vivo models.

Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Cereals are considered as a strategic product in human life and their demand is increasing with the growth of world population. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing bacteria - Azospirillum brasilense. In the region there are the wheat varieties - Dika and Lomtagora, which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Lomtagora 126 differs with its winter and drought resistance, and it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. This paper presents some preliminary experimental results where a continuous CO2 laser with a power of 25-40 W was used to radiate grains at a flow rate of 10 and 15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with A. brasilense isolate (108-109 CFU/ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. The results of our research show that combined treatment with laser and A. brasilense significantly influenced the germination of wheat. In the case of the Lomtagora 126 variety, grains were exposed to the beam on a speed of 10 cm/sec, only slightly improved the growth for 38-day seedlings, in case of exposition of grains with a speed of 15 cm/sec - by 23%. Treatment of seeds with A. brasilense in both exposed and non-exposed variants led to an improvement in the growth of seedlings, with A. brasilense alone - by 22%, and with combined treatment of grains - by 29%. In the case of the Dika variety, only exposure led to growth by 8-9%, and the combined treatment - by 10-15%, in comparison with the control variant. Superior effect on growth of seedlings of different varieties was achieved with the combinations of laser treatment on grains in a beam of 15 cm/sec (radiation power 30-40 W) and in addition of A. brasilense - nitrogen fixing bacteria. Therefore, this is a promising application of A. brasilense as active agents of bacterial fertilizers due to their ability of molecular nitrogen fixation in cereals in combination with laser irradiation: choosing a proper strain gives a good ability to colonize roots of agricultural crops, providing a high nitrogen-fixing ability and the ability to mobilize soil phosphorus, and laser treatment stimulates natural processes occurring in plant cells, will increase the yield.

Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass

In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.

Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action

This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.

Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Prospects for Sustainable Chemistry in South Africa: A Plural Healthcare System

The notion of sustainable chemistry has become significant in the discourse for a global post-colonial era, including South Africa, especially when it comes to access to the general health system and related policies in relation to disease or ease of human life. In view of the stubborn vestiges of coloniality in the daily lives of indigenous African people in general, the fundamentals of present Western medical and traditional medicine systems and related policies in the democratic era were examined in this study. The situation of traditional healers in relation to current policy was also reviewed. The advent of democracy in South Africa brought about a variety of development opportunities and limitations, particularly with respect to indigenous African knowledge systems such as traditional medicine. There were high hopes that the limitations of previous narrow cultural perspectives would be rectified in the democratic era through development interventions, but some sections of society, such as traditional healers, remain marginalised. The Afrocentric perspective was explored in dissecting government interventions related to traditional medicine. This article highlights that multiple medical systems should be adopted and that health policies should be aligned in order to guarantee mutual respect and to address the remnants of colonialism in South Africa, Africa and the broader global community.

Thermal Securing of Electrical Contacts inside Oil Power Transformers

In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.

A Study to Evaluate the Effectiveness of Simulation on Anaesthetic Non-Technical Skills in the Management of Major Trauma Patients

Background: Dynamic, challenging instances during the management of major trauma patients requires optimal team intervention to ensure patient safety and effective crisis management. These factors highlight the importance of increased awareness in both technical and non-technical skills (NTS) training. Simulation based training (SBT) is an effective tool that replicates and teaches the required clinical skills, resulting in teamwork improvement, better patient safety, and care. Aims: This study investigates change in NTS, during the management of major trauma patients, using SBT. We also investigated the relationship between NTS performance and participation in previous NTS workshop (NTSW), years of experience, previous simulation (PS), previous exposure to major trauma patient management (MTPM) and group size. Methods: NTS behaviours were assessed by a single rater using previously validated framework for observing and rating Anaesthetists’ Non-Technical Skills (ANTS) for anaesthetists and Anaesthetic Non-Technical Skills for Anaesthetic Practitioners (ANTS-AP) for anaesthetic nurses during SBT. Two anaesthetists (one senior, one junior) together with one to four registered anaesthetic nurses formed 17 teams. The SBT consisted of 3 major trauma scenarios: 1) Major haemorrhage following multiple stab wounds to the torso, 2) Traumatic brain injury complicated by unanticipated difficult intubation, and 3) Penetrating neck injury with major haemorrhage, complicated by a failed intubation. The scores of each NTS category for each scenario are evaluated for significance in change and used to correlate whether NTS during the simulation were affected by previous NTSW, PS, previous exposure to MTPM and group size. Results: The resulting anaesthetists and anesthetic nurses’ p-values were < 0.05 indicating a significant improvement in all NTS resulting from score differences between scenarios 1 & 2 and 1 & 3. Anaesthetists’ NTS categories were not influenced by PS, previous NTSW, and exposure to MTPM. However, anaesthetic nurses NTS categories were influenced by PS, exposure to MTPM but not by NTSW. Conclusions: SBT has shown to be effective in improving the NTS for both anaesthetists and anaesthetic nurses. This enhances safety and team performance for MTPM. The impact of SBT in the clinical environment for patient management and safety warrants further research.

Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding

The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.

Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco

Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.

Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite

This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.

Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa

The aim of this study was to evaluate the dose- and time-dependent in vitro effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P

Investigation of the Medical Malpractice Tendency of Student Nurses

Introduction: Medical malpractice can be defined as health workers neglecting the expected standard or intentionally not implementing it, doing it wrong and/or incomplete, not being able to implement the accurate practice due to personal or systemic reasons despite desiring to do it correctly and the condition that causes permanent or temporary damage to the patient as a result. If the training periods in which health workers improve their knowledge and skills are passed efficiently, they are expected to have a low rate of error in their professional lives. Aim: Aim of the study is to determine the medical malpractice tendencies of students studying in nursing department. Material and Methods: This descriptive research has been performed with 454 students who study in 3rd and 4th years in the Nursing Department of the Faculty of Health Sciences in a state university in normal and evening education and go out for clinical practice during the 2017-2018 academic year. The sample consisted of 454 students who agreed to participate in the study. Ethics committee approval, the permission of the institution and the verbal consent of the participants were obtained. In collection of data, ‘Personal Information Form’ developed by the researchers and the Malpractice Tendency Scale (SMT) were used. The data were analyzed using SPSS 20 package program. 0.05 was used as the level of significance. Results: The Cronbach’s alpha internal consistency coefficient of the scale was 0.94 and the total mean value of the scale was 211.69 ± 22.14. The mean age of the participants was 22,08 ± 1,852 years; 165 (36,4%) were male and 288 (63,6%) were female. Their mean General Point Average (GPA) was 2.65 ± 0.454 (min 1.03 - max 3.90). Students' average duration of self study per week was 2.89 ± 3.81 (min 0 - max 30) hours. The mean score (80.73) of the 4th year students in the sub-dimension of Drug and Transfusion Applications was significantly higher than the mean score (79.20) of 3rd year students (p < 0.05). The mean score (81.01) of the Drug and Transfusion Applications sub-dimension of those who willingly chose the profession was higher than the mean score (78.88) of those who chose the profession unwillingly. The mean average score (21.48) of Fallings sub-dimension of students who cared for 3 to 4 patients per day was lower than the mean score (22.41) of those who cared for 5 patients and over daily on average (p < 0.05). Conclusion: As a result of this study, it was concluded that malpractice tendency of nursing students was low, and an inverse relationship was found between the duration of education and malpractice tendency.

Empirical Modeling of Air Dried Rubberwood Drying System

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.