Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems

Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm.

A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.