Abstract: The purpose of this paper was to develop a policy and associated regulatory actions together with legislations that could help in sustainable energy development in Africa and Nigeria in particular. As a result of depletion of fossil fuels in most African countries, renewable energy options such as solar, wind and hydropower biomass are considered to be alternative sources in sustaining the energy security in the continent and particularly Nigeria. Corruption level is another factor that hinders economic growth and development in Nigeria. A review of the past literature on sustainable energy policy from Europe has been carried out. The countries investigated include: The United Kingdom, Germany, Norway and Finland. Their policies have been examined, and this helps suggest new policies on sustainable energy for Nigeria and Africa as a continent. The policies analyzed focused on incentives such as Feed-in-Tariff (FiT). Renewable energy sources potential and renewable have been investigated in Nigeria and that could help in formulating new sustainable energy policy for the country. Some of the proposed policies includes: Renewable Obligation (RO), Cogeneration, FiT, Carbon Capture and Storage (CCS), Renewable Integration, and Heat Entrepreneurship. These are some the new policies that could help sustain the energy security, reduce the level of poverty and corruption in Nigeria as well as Africa in general. If these policies are well designed and properly implemented as observed in this research, Nigeria can achieve sustainable energy and economic growth and development in the near future. Each proposed policy was assigned a timeframe for it to be achieved.
Abstract: Load forecasting has become crucial in recent years
and become popular in forecasting area. Many different power
forecasting models have been tried out for this purpose. Electricity
load forecasting is necessary for energy policies, healthy and reliable
grid systems. Effective power forecasting of renewable energy load
leads the decision makers to minimize the costs of electric utilities
and power plants. Forecasting tools are required that can be used
to predict how much renewable energy can be utilized. The purpose
of this study is to explore the effectiveness of LSTM-based neural
networks for estimating renewable energy loads. In this study, we
present models for predicting renewable energy loads based on
deep neural networks, especially the Long Term Memory (LSTM)
algorithms. Deep learning allows multiple layers of models to learn
representation of data. LSTM algorithms are able to store information
for long periods of time. Deep learning models have recently been
used to forecast the renewable energy sources such as predicting
wind and solar energy power. Historical load and weather information
represent the most important variables for the inputs within the
power forecasting models. The dataset contained power consumption
measurements are gathered between January 2016 and December
2017 with one-hour resolution. Models use publicly available data
from the Turkish Renewable Energy Resources Support Mechanism.
Forecasting studies have been carried out with these data via deep
neural networks approach including LSTM technique for Turkish
electricity markets. 432 different models are created by changing
layers cell count and dropout. The adaptive moment estimation
(ADAM) algorithm is used for training as a gradient-based optimizer
instead of SGD (stochastic gradient). ADAM performed better than
SGD in terms of faster convergence and lower error rates. Models
performance is compared according to MAE (Mean Absolute Error)
and MSE (Mean Squared Error). Best five MAE results out of
432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting
performance of the proposed LSTM models gives successful results
compared to literature searches.
Abstract: Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.
Abstract: The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.
Abstract: The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified.
Abstract: Heating, cooling and lighting appliances in buildings
account for more than one third of the world’s primary energy
demand. Therefore, main components of the building heating systems
play an essential role in terms of energy consumption. In this context,
efficient energy and exergy utilization in HVAC-R systems has been
very essential, especially in developing energy policies towards
increasing efficiencies. The main objective of the present study is to
assess the performance of a family house with a volume of 326.7 m3
and a net floor area of 121 m2, located in the city of Izmir, Turkey in
terms of energetic, exergetic and sustainability aspects. The indoor
and exterior air temperatures are taken as 20°C and 1°C, respectively.
In the analysis and assessment, various metrics (indices or indicators)
such as exergetic efficiency, exergy flexibility ratio and sustainability
index are utilized. Two heating options (Case 1: condensing boiler
and Case 2: air heat pump) are considered for comparison purposes.
The total heat loss rate of the family house is determined to be
3770.72 W. The overall energy efficiencies of the studied cases are
calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall
exergy efficiencies, the flexibility factor and the sustainability index
of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034,
respectively.
Abstract: As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.