Rank-Based Chain-Mode Ensemble for Binary Classification

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Feature Based Unsupervised Intrusion Detection

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Network Anomaly Detection using Soft Computing

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

An Experiment on Personal Archiving and Retrieving Image System (PARIS)

PARIS (Personal Archiving and Retrieving Image System) is an experiment personal photograph library, which includes more than 80,000 of consumer photographs accumulated within a duration of approximately five years, metadata based on our proposed MPEG-7 annotation architecture, Dozen Dimensional Digital Content (DDDC), and a relational database structure. The DDDC architecture is specially designed for facilitating the managing, browsing and retrieving of personal digital photograph collections. In annotating process, we also utilize a proposed Spatial and Temporal Ontology (STO) designed based on the general characteristic of personal photograph collections. This paper explains PRAIS system.

Target Tracking in Sensor Networks: A Distributed Constraint Satisfaction Approach

In distributed resource allocation a set of agents must assign their resources to a set of tasks. This problem arises in many real-world domains such as distributed sensor networks, disaster rescue, hospital scheduling and others. Despite the variety of approaches proposed for distributed resource allocation, a systematic formalization of the problem, explaining the different sources of difficulties, and a formal explanation of the strengths and limitations of key approaches is missing. We take a step towards this goal by using a formalization of distributed resource allocation that represents both dynamic and distributed aspects of the problem. In this paper we present a new idea for target tracking in sensor networks and compare it with previous approaches. The central contribution of the paper is a generalized mapping from distributed resource allocation to DDCSP. This mapping is proven to correctly perform resource allocation problems of specific difficulty. This theoretical result is verified in practice by a simulation on a realworld distributed sensor network.

Latent Topic Based Medical Data Classification

This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.

Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.

An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Third Order Current-mode Quadrature Sinusoidal Oscillator with High Output Impedances

This article presents a current-mode quadrature oscillator using differential different current conveyor (DDCC) and voltage differencing transconductance amplifier (VDTA) as active elements. The proposed circuit is realized fro m a non-inverting lossless integrator and an inverting second order low-pass filter. The oscillation condition and oscillation frequency can be electronically/orthogonally controlled via input bias currents. The circuit description is very simple, consisting of merely 1 DDCC, 1 VDTA, 1 grounded resistor and 3 grounded capacitors. Using only grounded elements, the proposed circuit is then suitable for IC architecture. The proposed oscillator has high output impedance which is easy to cascade or dive the external load without the buffer devices. The PSPICE simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.76mW at ±1.25V supply voltages.

A Design of Electronically Tunable Voltagemode Universal Filter with High Input Impedance

This article presents a voltage-mode universal biquadratic filter performing simultaneous 3 standard functions: lowpass, high-pass and band-pass functions, employing differential different current conveyor (DDCC) and current controlled current conveyor (CCCII) as active element. The features of the circuit are that: the quality factor and pole frequency can be tuned independently via the input bias currents: the circuit description is very simple, consisting of 1 DDCC, 2 CCCIIs, 2 electronic resistors and 2 grounded capacitors. Without requiring component matching conditions, the proposed circuit is very appropriate to further develop into an integrated circuit. The PSPICE simulation results are depicted. The given results agree well with the theoretical anticipation.