Assessing and Evaluating the Course Outcomes of Control Systems Course Mapping Complex Engineering Problem Solving Issues and Associated Knowledge Profiles with the Program Outcomes

In the current context, the engineering program educators need to think about how to develop the concepts and complex engineering problem-solving skills through various complex engineering activities by the undergraduate engineering students in various engineering courses. But most of them are facing challenges to assess and evaluate these skills of their students. In this study, detailed assessment and evaluation methods for the undergraduate Electrical and Electronic Engineering (EEE) program are stated using the Outcome-Based Education (OBE) approach. For this purpose, a final year course titled control systems has been selected. The assessment and evaluation approach, course contents, course objectives, course outcomes (COs), and their mapping to the program outcomes (POs) with complex engineering problems and activities via the knowledge profiles, performance indicators, rubrics of assessment, CO and PO attainment data, and other statistics, are reported for a student-cohort of control systems course registered by the students of BSc in EEE program in Spring 2021 Semester at the EEE Department of Southeast University (SEU). It is found that the target benchmark was achieved by the students of that course. Several recommendations for the continuous quality improvement (CQI) process are also provided.

Modeling and Simulation of Ship Structures Using Finite Element Method

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.