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Zeros of Bargmann analytic representation in the
complex plane

Muna Tabuni

Abstract—The paper contains an investigation of zeros Of
Bargmann analytic representation. A brief introduction to Harmonic
oscillator formalism is given. The Bargmann analytic representation
has been studied. The zeros of Bargmann analytic function are
considered. The Q or Husimi functions are introduced. The The
Bargmann functions and the Husimi functions have the same zeros.
The Bargmann functions f(z) have exactly q zeros. The evolution
time of the zeros μn are discussed. Various examples have been given.
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I. INTRODUCTION

THIS Paper is devoted to study the zeros of Bargmann ana-
lytic representation in the complex plane. The Bargmann

function is very important kind of analytic functions [1], [2],
[3] in the complex plane [4], [5], [6]. The zeros of Bargmann
functions and the zeros of the Q or Husimi function which
are identical, have been used to consider of various models
[7], [8], [9], [10], [11], [12], [13]. The analytic Bargmann
functions f(z) have exactly q zeros which subjected to the
constraint.(30). The growth of an entire function f(z) is
described by the order ρ and type σ [14], [15], [16], [17]. The
entire function f(z) is polynomial of order q and has q zeros.
The q zeros of the analytic functions f(z) depends on the
distribution of the coefficients f0, f1, ..., fn. If the coefficients
f0, f1, ..., fn are real then the zeros μn are real or appear
as complex conjugate pairs and draw symmetric graph with
respect to the zr axis.

II. HARMONIC OSCILLATOR FORMALISM

Let Hq be the Hilbert space with number eigenstates |n〉. We
consider a harmonic oscillator corresponding the Hamiltonian:

H =
1

2
(x2 + p2); (1)

where x; p; the position and momentum operators with
[x, p] = i1.
Let a, a† be the creation and annihilation operators:

a =
x+ ip√

2
; a† =

x− ip√
2

; (2)

where

aa†|n〉 = n|n〉. (3)

These two operators obey the canonical commutation relation

[a, a†] = 1; (4)
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and act on the number state as follows:

a†|n〉 = (n+ 1)1/2|n+ 1〉;
a|n〉 = n1/2|n− 1〉; (5)

The displacement operators are defined as

D(z) = exp(za† − z∗a); z = (x+ ip)/
√
2. (6)

We consider the coherent states

|z〉 = exp

(
−1

2
|z|2

) ∞∑
n=0

(n!)−1/2zn|n〉. (7)

The coherent states are defined as the eigenstate of the
annihilation operator a

a|z〉 = z|z〉; (8)

and the position representation of the coherent state is a
Gaussian function

fz(x) = π−1/4exp(−x
2

2
+
√
2zx− zzR); z = zR + izI . (9)

The inner product of two coherent states |z1〉 and |z2〉 is

〈z1|z2〉 = exp(−1

2
|z1|2 − 1

2
|z2|2 + z1z

∗
2). (10)

III. HUSIMI FUNCTIONS

If we let |ψ〉 be an arbitrary state, the Husimi function is
defined by

Q(α) =
|〈α|ψ〉|2

π
(11)

with ∫
C

d2αQ(α) = 1 (12)

Example 1:
The Husimi function of the coherent state |β〉

Q(α) =
1

π
|〈α|β〉| = 1

π
exp(−|α− β|2), (13)

Example 2:
The Husimi function of the number state |n〉

Q(α) =
1

π
|〈α|n〉| = 1

π
exp(−|α|2) |α|

2n

n!
. (14)
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IV. BARGMANN ANALYTIC REPRESENTATION

We cosider an arbitrary |f〉 state

|f〉 =
∞∑

n=0

fn|n〉;
∞∑

n=0

|fn|2 = 1. (15)

In The Bargmann representation [2], [4], [5], [6] , the state
|f〉 is represented by

f(z) = exp(
|z|2
2

)〈z∗|f〉 =
∞∑

n=0

fnz
n

√
n!
, (16)

which is an entire function (i.e. analytic function in the
complex plane C) defined on a torus, satisfying the quasi-
periodic condition [7]

f
[
z + 1/

√
2
]
= exp(qπ(

1

2
+ z

√
2))f(z),

f
[
z + i/

√
2
]
= exp(qπ(

1

2
− iz

√
2))f(z). (17)

The inner product of the two states[2] is given by

〈f |g〉 =
1

π

∫
C

[f(z)]∗g(z)exp(−|z|2)d
2z

π

=
∑
n

f∗ngn , d2z = dzRdzI . (18)

We consider an arbitrary operator Ω

Ω =

∞∑
m,n=0

Ωmn|m〉〈n|. (19)

In the Bargmann analytic representation this operator can be
represented by the two variable analytic functions [18]

Ω(z, μ∗) = exp(
1

2
|z|2 + 1

2
|μ|2)〈z∗|Ω|μ∗〉

=
∞∑

m,n=0

Ωmnz
mμ∗n

√
m!n!

. (20)

The operator Ω acts on a state |f〉 as following

Ω|f〉 −→
∫
C

d2ζexp(−|μ|2)Ω(z, μ∗)f(z). (21)

Therefore we can represent the creation and annihilation oper-
ators by the two variable analytic functions in the Bargmann
analytic [18] representation (see 1)as following

a −→ μ∗ exp(zμ∗), a† −→ z exp(zμ∗) (22)

The Bargmann analytic representation of the creation and
annihilation operator is

a −→ ∂z, a† −→ z. (23)

A. The growth of Bargmann analytic functions

The growth of an entire function f(z) is described by the
order ρ and type σ [14], [15], [16], [17], [18].

ρ = lim
R→∞

sup
lnlnM(R)

lnR
, σ = lim

R→∞
sup

lnM(R)

Rρ
, (24)

where M(R) is the maximum value of f(z) on |z| = R.
The space H(ρ, σ) is a subspace of H(ρ

′
, σ

′
) if ρ < ρ

′
or if

ρ = ρ
′
; σ < σ

′
.

We can now derive the Bargmann analytic representation of
some quantum states as examples.
• The number state |n〉 is represented as

f(z) =
zn√
n!
. (25)

It is of order 0.
• The coherent state |α〉 is represented as

f(z) = exp(αz − 1

2
|α|2). (26)

It is of order ρ = 1 and type |α|.

V. ZEROS OF BARGMANN FUNCTION

We denote as μn the zeros of f(z), i.e. f(μn) = 0. Let

 be the boundary of the fundamental domain of analyticity,
S = [0, 1/

√
2]× [0, 1/

√
2]. We consider the integrals

I =

∮
�

dz

2πi

f(z)
′

f(z)
, J =

∮
�

dz

2πi

f(z)
′

f(z)
z. (27)

I is equal to the number of zeros of this function (with the
multiplicities taken into account), inside the contour 
. J is
equal to the sum of these zeros. Using the quasi-periodicity
of Eq. (17) we prove that the integral I , for a contour along
the boundary 
, is equal to q. Therefore the analytic functions
f(z) have exactly q zeros [7], [8].

∮
�

dz

2πi

f(z)
′

f(z)
= q. (28)

Using the quasi-periodicity of Eq. (17) we also prove that [7],
[8] ∮

�

dz

2πi

∂zf(z)

f(z)
z = 2−3/2q(1 + i); (29)

giving the sum of the zeros μn of f(z). Therefore the analytic
functions f(z) [7], [8] have exactly q zeros subjected to the
constraint

q∑
n=1

μn = 2−3/2q(1 + i). (30)

The Husimi function and Bargmann function f(z) are related
to each other and it easy to see that there zeros are identical
(i.e μ is a zero of f(z) providing ζ is a zero of the Husimi
function). The Weierstrass-Hadamard factorization allows the
reconstruction of entire functions from their zeros [2], [18].
We suppose that q zeros μn of f(z) are given, and that they
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Fig. 1. The distributions of zeros of function f(z) of Eq.(33). The |f(t)〉
at t = 0 is described through the coefficients fn in table.I

satisfy the constraint of Eq. (30). The Weierstrass-Hadamard
reconstructs the Bargmann functions f(z) as following [2]

f(z) = zm
q∏

n=1

exp(Qp(z)E(μn, d), (31)

where

E(μn, d) = (1− z

μ
) exp

(
z

μ
+
z2

μ2
+ ...+

zd

μd

)
; (32)

m is the multiplicity of the zero, Qp(z) is polynomial of
degree p and d is a positive number.

Example 3:
As an example we consider the function

f(z) =

14∑
n=0

fnz
n

√
n!
, (33)

The coefficients fn are given in Table. I. In Fig.1 we show

i fi(0) i fi(0)
0 0.1-0.2i 8 0.1+0.01i
1 0.3+0.3i 9 0.1-0.2i
2 0.3+0.2i 10 0.1-0.1
3 0.01-0.3i 11 -0.1+0.2
4 0.1-0.01i 12 0.2+0.3i
5 0.3-0.2i 13 -0.01-0.1i
6 0.9-0.03i 14 -0.01-0.1i
7 0.3+0.01i

TABLE I
THE COEFFICIENTS fn OF FUNCTION IN EQ.(33)

the distribution of zeros of function f(z) of Eq.(33) which
is polynomial of order 14 and has 14 zeros. The q zeros
of the analytic functions f(z) depends on the distribution of
the coefficients f0, f1, ..., fn. This coefficients subjected to the
constraint

q∑
n=0

f2n = 1. (34)

which comes from the normalization.

Real coefficients
let μ1, μ2 ∈ R. If f(x) is a polynomial with real

coefficients, then:
μ1 + iμ2 is a zero of f(x) ⇐⇒ μ1 − iμ2 is a zero of f(x).
In our case if the coefficients f0, f1, ..., fn are real or imag-
inary numbers, then the zeros μn are real or appear as com-
plex conjugate pairs. Below we give examples with real and
imaginary coefficients. zeros μn are real or appear as complex
conjugate pairs and draw symmetric graph with respect to the
zr axis.

Example 4:
We consider the function in Eq.33. The coefficients
f0, f1, ..., fn is described through the real part of the coef-
ficients in table.(I), where the zeros at t = 0 are given in the
table. II In this case the eighth zeros μn are real or appear

i μi(0) i μi(0)

0 -22.3 7 -0.8-i2.7
1 13.5 8 0.2+i2.5
2 2.9+i2.9 9 0.2-i2.5
3 2.9-i2.9 10 1.6+i1.7
4 -2.86+i0.87 11 1.6-i1.7
5 -2.9-i0.9 12 -0.9
6 -0.8+i2.7 13 0.17

TABLE II
THE DISTRIBUTION OF THE ZEROS μn(t) OF FUNCTION IN EQ.(33),

WHERE THE COEFFICIENTS ARE THE REAL PART OF THE COEFFICIENTS IN
TABLE.(I)

as complex conjugate pairs and draw symmetric graph with
respect to the zr axis. Here each zero has its own complex
conjugate. It is easy to see that

μ2 (0) = (μ3 (0))
∗, μ4(0) = (μ5(0))

∗

μ6 (0) = (μ7 (0))
∗, μ8(0) = (μ9(0))

∗

μ10(0) = (μ11(0))
∗. (35)

In Fig. 2 we present the distribution of this zeros. Therefore
whether the coefficients real or imaginary numbers the zeros
μn appear as complex conjugate pairs or lie on on zr axis. In
addition we found numerically that the zeros of function f(x)
with coefficients f0, f1, ..., fn are equal the zeros of function
g(x) with coefficients if0, if1, ..., ifn.

Example 5:
We consider the function

f(z) =
8∑

n=0

fnz
n

√
n!
. (36)

The coefficients f0, f1, ..., fn is described through the
imaginary part of the coefficients The corresponding zeros
In this it is seen that the zeros of the function with the
coefficients if0, if1, ..., ifn are the same zeros in table.IV.
In Fig. 3 we show the distribution of this zeros.

VI. MOTION OF THE ZEROS

Using the Hamiltonian H the state |f(0)〉 at t = 0 evolves
at time t into

|f(t)〉 = exp(itH)|f(0)〉, (37)
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Fig. 2. The distributions of zeros in table.(II). The coefficients are real part
of the coefficients in table.I. Each zero has its own complex conjugate or lies
on zr axis (zi = 0).

i fi(0) i fi(0)
0 0.04-i0.02 5 0.28+i0.21
1 0.09+i0.02 6 0.32+i0.25
2 0.13-i0.07 7 0.37+i0.30
3 0.23+i0.16 8 0.42+i0.35
4 0.23+i0.16

TABLE III
THE COEFFICIENTS fn OF FUNCTION IN EQ.(36)
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Fig. 3. The distributions of zeros in table.(IV).

the corresponding zeros also evolves in time.
Example 6:

Let

μ0(0) = −0.1− 1.2, μ1(0) = −1.1− 0.4i,

μ2(0) = −0.7 + 0.8i, μ3(0) = 0.3 + 0.96i, (38)

be the zeros at t = 0 and let

H =

⎡
⎢⎢⎢⎢⎣

1 i 0 0 0
−i 2 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (39)

be the Hamiltonian with eigenvalues 0.38, 1, 1, 2.3 In Fig.4 we
plot the motion of this zeros.

Example 7:

i μi(0) i μi(0)

0 0.93-i1.60 4 -1.46-i0.15
1 -0.21-i1.60 5 -1.19+i0.79
2 -1.08-i1.06 6 -0.35+i1.38
3 0.87+i1.49 7 -0.01+i0.78

TABLE IV
THE DISTRIBUTION OF THE ZEROS μn(t) OF FUNCTION IN EQ.(??),

WHERE THE COEFFICIENTS ARE THE REAL PART OF THE COEFFICIENTS IN
TABLE.(III)
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Fig. 4. The motion of zeros in Eq. (38) using the Hamiltonian of Eq.(39).
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Fig. 5. The motion of zeros in Eq. (40) using the Hamiltonian of Eq.(41).

Let

μ0(0) = −0.7 + 1.2i, μ1(0) = −0.7− 1.2i,

μ2(0) = −1.2, (40)

be the zeros at t = 0 and let

H =

⎡
⎢⎢⎣

1 i 0 0
−i 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (41)

be the Hamiltonian with eigenvalues 0, 1, 1, 2 We seen that the
zeros of the function with real coefficients are real or appear
as complex conjugate pairs and draw symmetric graph with
respect to the zr axis. Here we found numerically that the
motion of the zeros also draw symmetric graph with respect
to the zr axis. In Fig.5 we plot the motion of this zeros.

VII. CONCLUSION

We have studied the Bargmann analytic representation. The
zeros Bargmann function and there time evolution have been
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considered. We have derived some examples to consider the
motion of various zeros for various Hamiltonians. A brief
discussion to the Husimi functions are given. The Husimi
function and Bargmann function f(z) are related to each other
and there zeros are identical. The analytic functions f(z) have
exactly q zeros. If the coefficients f0, f1, ..., fn are real then
the zeros μn are real or appear as complex conjugate pairs
and draw symmetric graph with respect to the zr axis.
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