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Abstract—In this paper, we extend the concepts of primal and
weakly primal ideals for posets. Further, the diameter of the zero
divisor graph of a poset with respect to a non-primal ideal is
determined. The relation between primary and primal ideals in posets
is also studied.
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I. INTRODUCTION

THE study of zero-divisor graphs was initiated by Istvan

Beck [4] in 1988, when he proposed a method for

coloring a commutative ring by associating the ring to a simple

graph, the vertices of which were defined to be the elements

of the ring, with vertices x and y joined by an edge when

x∧ y = 0. In 1999 Anderson and Livingston [1] changed this

definition, restricting the set of vertices to the non-zero zero

divisors of the ring, and from their paper work is proceeded in

two directions. Specifically, Redmond [17] investigated zero-

divisor graphs of non-commutative rings, while DeMeyer,

McKenzie, and Schneider [5] looked at the zero-divisor graphs

of commutative semigroups with 0. The other direction is the

work for posets with 0.

Nimbhorkar, Wasadikar and DeMeyer [16] introduced the

zero divisor graphs for meet-semilattice L with 0 and proved

a form of Beck’s Conjecture. They associated a zero divisor

graph to a meet-semilattice L with 0, whose vertices are the

elements of L and two distinct elements x, y ∈ L are adjacent

if and only if x ∧ y = 0
This work was further extended by Halaš and Jukl [8] to

posets with 0(see also, [7]). Halaš and Jukl [8] introduced the

concept of zero divisor graph to posets with 0 where vertex

set of the zero divisor graph G(P ) is the poset P and two

vertices x and y are adjacent if and only if (x, y)� = {0}.

The zero divisor graph with respect to an ideal was first

defined in the context of commutative rings by Redmond [17].

In [9], Joshi introduced a similar graph in the context of posets,

which consider both definition of zero divisor graphs given by

Lu and Wu [15].

Initially, the concept of primal and weakly primal ideals

over commutative semirings introduced by Attani [2], [3]. The

concept of primal ideals on lattices already studied by Pourali,

Joshi and Waphare in [11]. To see more, [12]-[14].

In this paper, we extend the concept of primal ideal in terms

of posets and we show that the result holds for the class of

posets. At the end of this paper, we find the relation between

primal and primary ideals of posets.
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II. PROPERTIES OF A ZERO DIVISOR GRAPH OF A POSET

We begin with necessary concepts and terminology in a

poset P . Let A ⊆ P . The set Au = {x ∈ P | x ≥ a for

every a ∈ A} is called upper cone of A. Dually, we have

the concept of lower cone A� of A. The upper cone {a}u
is simply denoted by au and {a, b}u is denoted by (a, b)u.

Similar notations are used for lower cones.

A non-empty subset I of a poset P is called a semi-ideal,
if for x ∈ I , y ∈ P , y ≤ x implies y ∈ I . A proper semi-ideal

I of a poset P is called a prime semi-ideal, if (a, b)� ⊆ I
implies a ∈ I or b ∈ I; Venkatnarasimhan [18].

A non-empty subset I of a poset P is called an ideal if

a, b ∈ I implies (a, b)u� ⊆ I . An ideal I �= P is called prime
if (a, b)� ⊆ I implies either a ∈ I or b ∈ I; Halaš [6]. Dually,

we have concepts of filters and prime filters.

Now, the concept of a zero divisor graph of a poset P with

respect to an ideal I is due to Joshi [9].

Definition 1: Let I be an ideal of a poset P with 0. We

associate an undirected graph, called the zero divisor graph
of P with respect to the ideal I , denoted by GI(P ) in which

the set of vertices is {x ∈ P \ I |(x, y)� ⊆ I for some y ∈
P \ I} and two distinct vertices x, y are adjacent if and only

if (x, y)� ⊆ I . When I = {0} then the zero divisor graph is

denoted by G(P ).
Definition 2: For an ideal I and a non-empty subset A of

a poset P , define a subset I : A of P as follows :

I : A = {z ∈ P |(a, z)� ⊆ I; ∀a ∈ A}.
If A = {x} then we write I : x instead of I : {x}. Note

that, if x ≤ y for x, y ∈ P , then I : y ⊆ I : x. Observe that

I ⊆ I : A and I : A = ∩x∈AI : x however, I : A need not be

an ideal but it is a semi-ideal. Moreover, I = (0] then I : x is

nothing but Ann(x) = {y|(x, y)� = 0}.

Definition 3: Let I be an ideal of a lattice L with 0. We

associate an undirected graph, called the zero divisor graph of
L with respect to the ideal I , denoted by GI(L) in which the

set of vertices is V (GI(L)) = {x /∈ I |x ∧ y ∈ I for some

y /∈ I} = ZI(L)
∗ and two distinct vertices x, y are adjacent if

and only if x ∧ y ∈ I . When I = {0} then the corresponding

zero divisor graph is denoted by G{0}(L).
We recall the following concepts from graph theory, see D.

B. West [19].

Definition 4: Let G be a graph. Let x, y be distinct vertices

in G. We denote by d(x, y) the length of a shortest path from

x to y (if it exists) and put d(x, y) = ∞ otherwise we write

d(x, x) = 0 for x ∈ V (G). The diameter of G is denoted by

diam(G), diam(G) = sup{d(x, y) | x, y ∈ V (G). A cycle
in a graph G is a path that begins and ends at the same vertex.
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The girth of G, denoted gr(G), is the length of a shortest

cycle in G (and gr(G) = ∞ if G has no cycle).

III. ZERO DIVISOR GRAPH OF A POSET WITH RESPECT TO

PRIMAL IDEALS

Definition 5: Let I be an ideal of a poset P . A set J of P
is called prime to I if I : J = I .

In particular if J = {a} , then we say that a ∈ P is prime

to I if I = I : a. We will define FI =
⋃{J ⊆ P | I : J = I}.

Further, the set of elements of P that are not prime to I will

denote by S(I), where S(I) =
⋃{J ⊆ P | I � I : J} .

Lemma 1: S(I) is a semi-ideal .

Proof: Let x ∈ S(I) and y ≤ x we want to show that

y ∈ S(I). By applying definition of S(I) there exists J such

that I � I : J and x ∈ J . Therefore there exists t ∈ I : J
such that t /∈ I . Hence (t, x)� ⊆ I . Therefore (t, y)� ⊆ I .

Therefore y ∈ I : t for some t /∈ I . Hence y ∈ S(I).

Lemma 2: Let I be a proper ideal of a poset P with 1.

If I is prime ideal then S(I) is an ideal. Further, S(I) as an

ideal, is prime.

Proof: Let a, b ∈ S(I). We have to show that (a, b)u� ⊆
S(I). Assume on the contrary that (a, b)u� �⊆ S(I), then there

exists t ∈ (a, b)u� such that t /∈ S(I). Since a, b ∈ S(I),
there exist some sets say, J1 and J2 such that I � I : J1 and

I � I : J2. Therefore there exist x ∈ I : J1 such that x /∈ J1
and y ∈ I : J2 such that y /∈ J2. Therefore (x, j1)

� ⊆ I for

every j1 ∈ J1 and (y, j2)
� ⊆ I for every j2 ∈ J2.

In particular since a ∈ J1 and b ∈ J2, we have (x, a)� ⊆ I
and (y, b)� ⊆ I (∗).
Since x, y /∈ I and I is prime, therefore (x, y)� �⊆ I .

There exists z ∈ (x, y)� such that z /∈ I . From (∗) we

get, (z, a)� ⊆ I and (z, b)� ⊆ I . Since every prime ideal

is semi prime, we have {z, (a, b)u}� ⊆ I . Since t /∈ S(I),
then {t} is prime to I , which means I = I : t. Further,

t ∈ (a, b)u� and {z, (a, b)u}� ⊆ I , we have (z, t)� ⊆ I .

Therefore, z ∈ I : t = I . Thus z ∈ I , a contradiction to

z /∈ I .

Next, to show that S(I) is a prime ideal. Let (a]∩(b] ⊆ S(I)
and a, b /∈ S(I), therefore we have I = I : a and I = I : b.
Put J = (a, b)�. Let x ∈ I : J , therefore x ∈ I : (a, b)�. Then

we get (x, a, b)� ⊆ I and hence (x, a)� ⊆ I : b = I . Therefore

(x, a)� ⊆ I , and we get x ∈ I : a = I . Thus I : J ⊆ I .

Converse is always true, thus I : J = I . Hence J = (a, b)� is

prime to I .

Lemma 3: Let I be a proper ideal of poset P with 1, then

the following statements are true:

(i) I ⊆ S(I)

(ii) V (GI(P )) = S(I)\I . In particular, V (GI(P )) ∪ I =
S(I).

Proof: (i) Let x ∈ I . To show that x ∈ S(I). Since I
is proper ideal of P , therefore there exists y ∈ P such that

y /∈ I . Put J = {x}. Clearly we have I ⊂ I : J = I : x = P .

Now to show that I � I : J , then there exists t ∈ I : J such

that t /∈ I . But I : J = I : {x} = {z ∈ P |(z, x)� ⊆ I}.

In particular z = y then y ∈ I : J and since y /∈ I then

I � I : J .

(ii) Let r ∈ V (GI(L)), then there exist r /∈ I such that

(r, x)� ⊆ I for some x /∈ I . Put J = {x}, then r ∈ I : J =
I : x and r /∈ I . Therefore I � I : J .

Conversely, let a ∈ S(I)\I that means there exists J ⊆ P
such that I � I : J and a ∈ J . Therefore, there exists t ∈ I : J
such that t /∈ I . That means (t, j)� ⊆ I for every j ∈ J .

In particular, put j = a, then we have (t, a)� ⊆ I . Hence

a ∈ V (GI(P )).
Definition 6: A proper ideal I of a poset P is said to be

primal if S(I) forms an ideal. In this case we also say that I
is a Q-primal ideal of P , where Q is a prime ideal of a poset

P .

Lemma 4: Let I and Q be ideals of a poset P with 1

and I ⊆ Q. Then I is a Q-primal ideal of P if and only if

V (GI(L)) = Q\I .

Proof: If I is a Q-primal ideal of P , then by Lemma 3,

V (GI(P )) = S(I)\I = Q\I
Conversely, assume that V (GI(P )) = Q\I . It suffices to

show that Q is exactly the set of elements of P that are not

prime to I . Since , every element of I is not prime to I , hence

we can assume that c ∈ Q\I = V (GI(P )). Then there exists

z /∈ I such that (c, z)� ⊆ I . Put J = {c}. Then there exists

z ∈ I : J = I : c and z /∈ I . Therefore I � I : J . So we could

find J ⊆ P such that c ∈ J and I � I : J . Hence c ∈ S(I)\I ,

which yields that Q\I ⊆ S(I). Therefore Q ⊆ S(I)\I .

Next, suppose that a ∈ S(I). If a ∈ I then a ∈ Q as I ⊆ Q.

When S(I) ⊆ Q as we are through. If a /∈ I and a ∈ S(I),
hence there exists J ⊆ P such that a ∈ J and I � I : J . There

exists t ∈ I : J such that t ∈ I . Then we have (t, j)� ⊆ I ,

∀j ∈ J . In particular, put J = {a}, then we have (t, a)� ⊆ I .

Hence a ∈ V (GI(L)) = Q\I . Therefore S(I)\I ⊆ Q\I .

Hence S(I) ⊆ Q.

Corollary 1: Let I be an ideal of a poset P . Then I is

Q-primal of P if and only if V (GI(P )) ∪ I is an (prime)

ideal.

Theorem 1: (Joshi and Mundlik [10])Let Q be a prime

ideal of a poset P . Then the following statements are equiva-

lent.

(a) Q is minimal prime ideal belonging to I .

(b) For each x ∈ Q, there exists y /∈ Q such that (x, y)� ⊆
I .

(c) Exactly one of them (x] or I : x are contained in Q.

Theorem 2: Let I and J be ideals of poset P . Then

V (GI(P )) = V (GJ(P )) if and only if I = J .

Proof: Let V (GI(P )) = V (GJ(P )) and assume on the

contrary that I �= J . Then there exists x ∈ I such that x /∈
J . Let a ∈ V (GI(P )) = V (GJ(P )). Hence, for every a ∈
V (GI(P )), there exists b ∈ V (GI(P )) such that (a, b)� ⊆ I
and since x ∈ I . Therefore we have (x, a)�, (x, b)� ⊆ I . We

claim that (x, a)�, (x, b)� � J .

If possible, (x, a)�, (x, b)� ⊆ J . Since x /∈ J , therefore we

get a ∈ V (GJ(P )). Without loss of generality assume that

(x, a)� ⊆ J , which yields x ∈ V (GJ(P )) = V (GI(P )), a

contradiction to x ∈ J . Thus (x, a)�, (x, b)� � J .

Now, note that as (a, b)� ⊆ J , we have that (x, a, b)� ⊆
J , and (x, a)�, (x, b)� � J . Therefore (x, a)�, (x, b)� ⊆
V (GI(P )) = V (GJ(P )). Hence (x, a)�, (x, b)� ⊆ J , a

contradiction to the fact that (x, a)�, (x, b)� ⊆ J . Thus I = J .
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Conversely, if I = J then it is easy to see that V (GI(P )) =
V (GJ (P )).

Corollary 2: Let I be Q-primal ideal and J be an ideal

of a poset P such that V (GI(P )) = V (GJ(P )). Then J is a

Q-primal ideal of P .

Corollary 3: Let I and J be ideals of a poset P with 1.

Then V (GI(P )) = V (GJ (P )) if and only if S(I) = S(J).

Proposition 1: Let I be a semi prime ideal of a poset P .

If there are non-adjacent elements a, b ∈ V (GI(P )) such that

the ideal (a, b)u� is prime to I . Then diam (GI(P )) = 3.

Proof: Since a and b are non-adjacent, we must have

d(a, b) �= 1. Let d(a, b) = 2. Then there is an element

c ∈ P\I , such that (a, c)� ⊆ I and (c, b)� ⊆ I . Since I is

semi prime ideal, then we have (c, (a, b)u)� ⊆ I . Therefore,

c� ∩ (a, b)u� ⊆ I , then we get c� ⊆ I : (a, b)u�. Since (a, b)u�

is prime to I , by applying definition, there exists J ⊆ P
such that I = I : J . Put J = (a, b)u�. Then c� ⊆ I :
(a, b)u� = I . Hence c ∈ I , a contradiction. Thus d(a, b) �= 2.

Since diam(GI(P )) ≤ 3, therefore diam(GI(P )) = 3, as

required.

Lemma 5: Let I be an ideal of a poset P . If I is not Q-

primal, there exist elements a and b of V (GI(P )) such that

the ideal (a, b)u� is prime to I .

Proof: Since I is not Q-primal, therefore S(I) is not an

ideal. Therefore there exist a, b ∈ S(I) such that (a, b)u� �
S(I). Hence there exists t ∈ (a, b)u� such that t /∈ S(I).
Therefore t /∈ I , for otherwise t ∈ I ⊆ S(I), therefore t ∈
S(I), which is a contradiction. Thus t /∈ J , ∀J with I � I : J
(∗)

To show that (a, b)u� is prime to I , we have to show that

I = I : (a, b)u�. Suppose on the contrary that, I � I : (a, b)u�.
Hence there exists z ∈ I : (a, b)u� such that z /∈ I . Now

{z, (a, b)u}� ⊆ I . Since t ∈ (a, b)u�, we have (z, t)� ⊆ I .

Hence t ∈ I : z and also t /∈ I . Put J = {z}. Then we

have an element t ∈ I : J and t /∈ I . Therefore, t ∈ J with

I � I : J a contradiction to (∗).
Definition 7: A proper ideal Q of a poset P is said to be

weakly prime if 0 �= (a, b)� ⊆ Q implies that a ∈ Q or b ∈ Q.

We assume that (0] is always weakly prime.

Definition 8: An element a ∈ P is called weakly prime to

an ideal I if 0 �= (r, a)� ⊆ I implies that r ∈ I . Denote W (I),
the set of all elements of P that are not weakly prime to I .

Definition 9: A proper ideal I of P is called Q-weakly
primal if the set Q = W (I) ∪ {0}, forms an ideal. This ideal

is always a weakly prime ideal.

Definition 10: Let I be an ideal of a poset P . We define

set ZI(P ) = {r ∈ P\I|(r, a)� = 0 for some a ∈ P\I}.

Lemma 6: Let I be a Q-weakly primal ideal of a poset P .

Then V (GI(P )) = (W (I)\I) ∪ ZI(P ).

Proof: Assume that I is a Q-weakly primal ideal of P .

Let r ∈ V (GI(P )), then there is an element a ∈ P\I with

(r, a)� ⊆ I . If (r, a)� �= 0, then r ∈ W (I) . If (r, a)� = 0,

then r ∈ ZI(P ). Hence V (GI(P )) ⊆ (W (I)\I) ∪ ZI(P ).

Let s ∈ (W (I)\I) ∪ ZI(P ). If s ∈ (W (I)\I) then 0 �=
(s, b)� ⊆ I for some b ∈ P\I , hence s ∈ V (GI(P )). If s ∈
ZI(P ), then there is an element c ∈ P\I such that (s, c)� =
0 ∈ I hence s ∈ V (GI(P )) .

Proposition 2: Let I be an ideal of a poset P and Q be an

ideal of P with W (I) ⊆ Q and (Q\I) ∩ ZI(P ) = φ. Then

V (GI(P )) = (Q\I) ∪ ZI(P ) if and only if I is a Q-weakly

primal ideal of L.

Proof: By Lemma 6, it suffices to show that if

V (GI(P )) = (Q\I) ∪ ZI(P ) then I is a Q-weakly primal

ideal of P . We show that Q\{0} consists exactly of elements

of P that are not weakly prime to I . Let s ∈ Q\{0}. Since

every non-zero element of I is not weakly prime to I , we can

assume that s /∈ I . Therefore, s ∈ Q\I ⊆ V (GI(P )) implies

that (s, b)� ⊆ I for some b ∈ Q\I . Since, (Q\I)∩ZI(P ) = φ,

we must have (s, b)� �= 0. Hence s is not weakly prime to I .

Hence Q\{0} ⊆ W (I). Since W (I) ⊆ Q\{0}, we have I is

Q-weakly primal ideal of P .

The following definition is due to Joshi and Mundlik [10]

Definition 11: An ideal I in a poset P is primary if

(i) I �= P
(ii) (x, y)� ⊆ I then either x ∈ I or y ∈ r(I) where r(I) =

∩I⊆QQ.

In particular, if r(I) = Q then I is called a Q-primary ideal.

The following result is due to Joshi and Mundlik [10]:

Theorem 3: Q is minimal prime ideal of a finite poset P
if and only if for any x ∈ Q there exists y /∈ Q such that

(x, y)� = {0}.

Proposition 3: Let I be a Q-primary ideal of a poset P
then I is a Q-primal ideal of a poset P .

Proof: It suffices to show that the set of elements of P
that are not prime to I is just Q. Assume that a is an element

of P that is not prime to I , then a ∈ S(I). Therefore there

exists J ⊆ P such that I � I : J and a ∈ J . Put J = {a},

then we have I � I : a. Hence there is an element b ∈ I : a
with b /∈ I and (a, b)� ⊆ I . Thus I be Q-primary gives a ∈ Q.

We have proved that S(I), set of elements of P that are not

prime to I is subset of Q. Now we will show that S(I) can

not be properly subset of Q.

Suppose S(I) � Q, then there exist an element x ∈ Q
such that x /∈ S(I). Therefore there exists J ⊆ P such that

I = I : J and x ∈ J . Put J = {x}. Therefore I = I : x
and x ∈ Q = r(I) = r(I : x) ⊇ I . Since r(I) is the smallest

prime ideal containing I . So by using Theorem 3, for any

x ∈ Q there exists y /∈ Q such that (x, y)� ⊆ I . Since I is

Q-primary then either x ∈ I or y ∈ r(I) but x /∈ I since if

x ∈ I then we must have I = P which is a contradiction.

Hence y ∈ r(I) = Q a contradiction to y /∈ Q
Proposition 4: Let I be an ideal of a poset P . Then I is Q-

primary if and only if GI(P ) = r(I)\I where r(I) = ∩I⊆QQ.

Proof: If I is Q-primary then by using Proposition 3, I
is Q-primal ideal of P . Since I ⊆ r(I) = Q then by lemma

3, I is Q-primal of P if and only if GI(P ) = Q\I = r(I)\I.
Conversely, suppose that a, b ∈ L are such that (a, b)� ⊆ I

but a /∈ I and b /∈ r(I). So b /∈ I . Then b ∈ GI(P ) = r(I)\I ,

which is a contradiction. Thus, I is primary.

Definition 12: The set of associated primes of a poset P
is denoted by Ass(P ) and it is the set of prime ideals q of P
such that there exists x ∈ P with q = Ann(x) .

Definition 13: A Graph G is said to be planar if it can be

drown in such a way that no two edges meet except at vertex

with which they are both incident .
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Theorem 4: Let P be a poset . Then the following hold:

(a) If |Ass(P )| ≥ 2 and p = Ann(x) and q = Ann(y) are

two distinct elements of Ass(P ) then (x, y)� = 0

(b) If |Ass(P )| ≥ 3 then girth(G(P )) = 3

(c) If |Ass(P )| ≥ 5 then G(P ) is not planar.

Proof: (a) Assume on the contrary that (x, y)� �= 0.

Therefore, x /∈ Ann(y) and y /∈ Ann(x). Since Ann(x) and

Ann(y) both are prime, we conclude that Ann(x) ⊆ Ann(y)
and Ann(y) ⊆ Ann(x). Hence Ann(y) = Ann(y), which is

a contradiction. Therefore (x, y)� = 0.

(b) Let p1 = Ann(x1) and p2 = Ann(x2) and p3 =
Ann(x3) belong to Ass(P ). Then x1 − x2 − x3 − x1 is a

cycle of length 3.

(c) Since |Ass(P )| ≥ 5, K5 is a subgraph of G(P ) and

hence by Kuratowski’s Theorem(A finite graph is planar if and

only if it does not contain a subgraph that is a subdivision of

K5 or K3,3), G(P ) is not planar.

The following result is due to Joshi [9]:

Theorem 5: Let I be an ideal of a poset P with 0. Then

the following hold:

(α) If P1 and P2 are prime semi ideals and I = P1 ∩ P2.

Then GI(P ) is a complete bipatite graph.

(β) If I is a semiprime ideal then GI(P ) is a complete

bipartite graph if and only if there exist prime ideals P1 and

P2 such that I = P1 ∩ P2.

Theorem 6: Let P be a poset and Ass(P ) = {p1, p2},

|pi| ≥ 3 for i = 1, 2 and p1 ∩ p2 = {0} then gr(G(P )) = 4.

Proof: Let pi = Ann(xi), i = 1, 2. Since p1, p2 are two

distinct elements of Ass(P ) then by using Theorem 4, we

have (x1, x2)
� = 0. Let a ∈ p1\{0, x2} and b ∈ p2\{0, x1}.

Since (a, b)� ⊆ p1 ∩ p2 = {0} we have a− x1 − x2 − b− a.

Thus G(P ) has a cycle, moreover by Theorem 5, G(P ) is a

complete bipartite graph and hence gr(G(P )) = 4.

Theorem 7: Let P be a poset and Ass(P ) = {p1, p2} with

p1 ∩ p2 �= 0. If |p1 ∩ p2| > 3, then gr(G(P )) = 3.

Proof: Let p1 = Ann(x1) and p1 = Ann(x1) and |p1 ∩
p2| > 3. Since p1 and p2 are distinct elements of Ass(P )
then by Theorem 4, we have (x1, x2)

� = 0. Now take a �=
0 ∈ p1 ∩ p2, then we have a ∈ p1 = Ann(x1) and a ∈ p2 =
Ann(x2). Therefore, (a, x1)

� = 0 and (a, x2)
� = 0. Hence

we get a− x1 − x2 − a. Therefore gr(G(P )) = 3.

Definition 14: A poset P with 0 is called 0-distributive
poset if, for x, y, z ∈ P , (x, y)� = 0 and (x, z)� = 0 together

imply that (x, (y, z)u)� = 0.

Definition 15: Let P be a poset then for all a ∈ P , we

denote by a⊥ = {x|(a, x)� = 0}
.

The following two results is due to Joshi and Mundlik [10]:

Lemma 7: Let L be a 0-distributive finite poset then for

every elements a, b ∈ P we have ((a] ∨ (b]]⊥ = a⊥ ∩ b⊥.

Theorem 8: Let P be a 0-distributive finite poset. Then a

prime ideal is minimal prime if and only if it contains exactly

one of a or a⊥.

Theorem 9: Let P be a 0-distributive finite poset. If P has

more than two minimal primes and there are non zero elements

a, b ∈ G(P ) such that ((a] ∨ (b]] has no non zero annihilator,

then diam(G(P )) = 3.

Proof: Case(I) Let P contains a pair of zero divisors a
and b such that (a, b)� �= 0 and ((a] ∨ (b]]⊥ = {0}. Then we

get, a⊥ ∩ b⊥ = 0 .

Now a, b ∈ V (G(P )), therefore there exists x �= 0 , y �= 0
such that (x, a)� = 0 and (y, b)� = 0. Therefore, x ∈ a⊥ and

y ∈ b⊥. Clearly x �= y. For otherwise, x ∈ a⊥ ∩ b⊥ = {0}, a

contradiction to the fact that x �= 0.

subcase(1) If (x, y)� = 0, then we have a path a−x−y−b.
Therefore, d(a, b) = 3 and hence diam(G(P )) = 3.

subcase(2) If (x, y)� �= 0 then (x, y)� ∈ V (G(P )) as

(a, x, y)� = 0 also (b, x, y)� = 0 then we have a−t−b, where

t ∈ (x, y)� . Hence (x, y)� ⊆ a⊥ ∩ b⊥ = {0} a contradiction.

Case(II) Consider when (a, b)� = 0 and P has more than

two minimal prime ideals. We may assume three minimal

primes as p, q and r. Since (a, b)� = 0 ∈ p therefore either

a ∈ p or b ∈ p. We claim that each minimal prime ideal

contains only one of a and b but not both of them. If possible

(a, b)� � p and p is minimal prime ideal and P is 0-

distributive poset therefore we have a⊥ /∈ p and b⊥ /∈ p.

Hence a⊥ ∩ b⊥ /∈ p as p is prime. But a⊥ ∩ b⊥ = {0} a

contradiction.

Without loss of generality, let a ∈ (p∩q)\r and b ∈ r\(p∪q)
and c ∈ (q∩r)\p. Consider x ∈ (a, (b, c)�)u. Clearly (b, c)� �=
0. For otherwise, (b, c)� = 0 ∈ p. Since p is prime, therefore

either b ∈ p or c ∈ p. Therefore we get a contradiction. Hence

(b, c)� �= 0. Further (a, b)� = 0. Clearly x ∈ (a, (b, c)�)u �= 0.

Moreover (x] ∨ (b] = (a] ∨ (b] then ((x] ∨ (b]] = ((a] ∨ (b]].
Since ((a] ∨ (b]]⊥ = {0} therefore ((x] ∨ (b]]⊥ = {0}. Then,

x⊥ ∩ b⊥ = 0. We claim that (x, b)� �= 0. If (x, b)� = 0
then x ∈ b⊥. Therefore, x ∈ (a, (b, c)�)u ∈ b⊥, and we get

(b, c)� ⊆ b⊥ which yields (b, c)� = 0 a contradiction. Hence

(x, b)� �= 0. Thus we have x �= 0, b �= 0 such that (x, b)� �= 0,

further ((x] ∨ (b]]⊥ = {0} by case(I), d(x, b) = 3. Thus

diam(G(P )) = 3.

Lemma 8: Let P be a 0-distributive poset and Z(P ) be

the set of zero divisors of P . Then Z(P ) =
⋃
q; where q is

minimal prime.

Proof: Let a ∈ Z(P ) to show that a ∈ ⋃
q. Since a ∈

Z(P ) there exists a non zero element b such that (a, b)� =
0. Suppose a /∈ ⋃

q; for every poset P . Then a /∈ q. By

using Theorem 8, we get a⊥ ∈ q. Then b ∈ a⊥ and hence,

b ∈ q. Therefore b ∈ ⋃
P ; for every poset P . Since P is 0-

distributive poset and
⋃

q = 0 therefore b = 0 a contradiction.

Conversely, suppose a ∈ ⋃
q so there exists a minimal prime

q such that a ∈ q. Therefore a⊥ �⊆ q. Then there exists a non

zero element b such that b ∈ a⊥ but b /∈ q. Then a ∈ Z(P ).
Hence Z(P ) =

⋃
q; where q is minimal prime.

Theorem 10: Let P be a 0-distributive poset and Z(P ) be

the set of zero divisors of P . If Z(P ) is not an ideal, then

diameter of G(P ) is less than or equal to 2 if and only if P
has exactly two minimal primes.

Proof: Suppose Z(P ) is not an ideal. So there exists a

non zero elements a, b ∈ Z(P ) such that (a, b)u� is not a zero

divisor. Hence (a ∨ b]⊥ = {0}.

By applying Theorem 7, a⊥ ∩ b⊥ = {0}. Since a, b ∈ Z(P ),
we have non zero elements c, d ∈ P such that (a, c)� = 0
and (b, d)� = 0. Clearly c �= d. For otherwise, since P is 0-

distributive poset, we get that (c, (a, b)u)� = {0}. Therefore
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we have, c ∈ (a ∨ b]⊥, a contradiction. Hence c �= d. By

using Theorem 9, there exists two minimal ideals p and q
such that c /∈ p and d /∈ q. By applying Theorem 8, we get

c⊥ ⊆ p and d⊥ ⊆ q. Since a ∈ c⊥ and b ∈ d⊥, we have

a ∈ p and b ∈ q. Therefore a⊥ �⊆ p and b⊥ �⊆ q. This implies

that the minimal prime ideals p and q are distinct. If possible

p = q then a⊥,b⊥ �⊆ p. Therefore a⊥ ∩ b⊥ �⊆ p. Then we

have, (a ∨ b]⊥ = 0 �⊆ p, a contradiction. Therefore p and q
are distinct. Since diam(G(P )) ≤ 2. By using Theorem 9,

diam(G(P )) is exactly 2.

Conversely, assume that poset P has exactly two distinct

minimal prime ideals, say p and q. Therefore there exists

elements a and b such that a ∈ p\q and b ∈ q\p. But then

(a, b)� ⊆ p∩q = {0}. Let x, y ∈ V (G(P )) and x, y be distinct

elements. Then clearly x or y can not be in both p and q.

Without loss of generality, we may assume that x ∈ p\q. If

(x, y)� = 0, then they are adjacent and so d(x, y) = 1. Now

if (x, y)� �= 0 since we have x ∈ p\q and b ∈ q\p, therefore

we have (x, b)� ⊆ p ∩ q = {0}. We claim that y /∈ q. For

otherwise, if y ∈ q then (x, y)� ⊆ q. Also since x ∈ p, we have

(x, y)� ⊆ p. Therefore (x, y)� ⊆ p∩ q = {0}, a contradiction.

Moreover Z(P ) = p ∪ q and since y /∈ q, therefore y ∈ p
which means (x, y)u� ⊆ p. Therefore ((x, y)u, b)� ⊆ p.

Moreover since b ∈ q\p, we have ((x, y)u, b)� ⊆ q. Therefore

((x, y)u, b)� ⊆ p ∩ q = {0}. Therefore (x, b)� = 0 and

(y, b)� = 0. Therefore d(x, y) = 2. Hence diam(G(P )) ≤ 2.
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