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Abstract—A word recognition architecture based on a network 

of neural associative memories and hidden Markov models has been 
developed. The input stream, composed of subword-units like word-
internal triphones consisting of diphones and triphones, is provided 
to the network of neural associative memories by hidden Markov 
models. The word recognition network derives words from this input 
stream. The architecture has the ability to handle ambiguities on 
subword-unit level and is also able to add new words to the 
vocabulary during performance.  The architecture is implemented to 
perform the word recognition task in a language processing system 
for understanding simple command sentences like “bot show apple”. 
 

Keywords—Hebbian learning, hidden Markov models, neural 
associative memories, word recognition.  

I. INTRODUCTION 
PEECH recognition can be generally defined as the 
problem of recognizing the words from a given dictionary, 

relying on the information contained in the spoken speech 
signal. 
 In this study, the preprocessing of the spoken speech signal 
is done by hidden Markov models (HMMs) [1][2] to generate 
a  sequence of corresponding subword-units such as context 
dependent phonemes or syllables and the word recognition is 
implemented in an architecture based on neural associative 
memories (NAMs)[3]-[5], where the words within the 
dictionary are stored.  

The word recognition architecture is a network of 
heteroassociative memories that process the subword-unit 
stream generated by the HMMs in order to determine the word 
that matches the input stream best. 

The words are stored in the system using sparsely 
distributed representations with respect to their transcriptions 
on subword-unit level. Hence, as the number of units changes 
with the chosen subword-unit type, the memory usage of the 
architecture depends on the chosen type. 
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The architecture is also integrated into a language 
understanding system which is able to understand and to react 
to simple command sentences like “bot show apple” on a 
small vocabulary consisting of 43 words. The system receives 
a spoken command and analyses it with respect to a given 
grammar to extract the meaning of the command. The 
architecture on language level is a network that consists of 18 
interconnected modules, each containing a NAM of spiking 
neurons, the so-called spike counter model [6]. After the 
words (or superpositions of words) are generated by the word 
recognition network, the stream of words is then forwarded to 
the language module for semantical interpretation. In this 
paper, however, we will focus on the word recognition 
architecture. 

The word recognition architecture can handle ambiguities 
that occur because of subword-units incorrectly recognized by 
HMMs. In the case that it is not able to decide on a unique 
word, the set of all alternative words is held to be forwarded 
to the architecture on language level to resolve the ambiguity 
on word level with respect to the context information [7]. 

The architecture based on NAMs has also the important 
advantage over standard HMMs that it is able to learn new 
words encountered during performance, which is 
computationally expensive for HMMs due to the fact that the 
dictionary, language model and many parameter files required 
for HMMs need to be rebuilt and, if it is necessary, new 
subword-unit HMMs must also be created and trained for new 
words. The learning process is initiated by a special sentence 
“this is X” where “X” is the novel word. While learning novel 
words, the HMMs generate a subword-unit transcription for 
the unknown word based on the available subword-units, 
which is used to create a new cell assembly in the 
heteroassociative memories involved in the learning process. 
After learning, the new word can be recognized as previously 
stored words. 

II. THE WORD RECOGNITION SYSTEM 

A.  Neural Associative Memories 
The memories in the architecture are implemented based on 

the binary Willshaw model of neural associative memories 
which uses binary neurons and synapses [3][8][9][10][11]. 
The binary Willshaw model is efficient with respect to storage 
capacity, fault tolerance and retrieval efficiency [8][9][10]. 

Using sparsely coded patterns, which mean low information 

Word Recognition and Learning based on 
Associative Memories and Hidden Markov 

Models 
Zöhre Kara Kayikci, and Günther Palm 

S 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

37

 

 

content per pattern, it is possible to store large pattern sets in 
associative memories and retrieve the stored patterns with low 
error probability, thus reaching high storage capacity values.  

If the stored patterns are sparse (i.e. have a low density of 
ones) and the density of ones in the memory matrix is equal to 
0.5, 501)P( .wij == , the binary Willshaw model of 

associative memory has a maximal asymptotic storage 
capacity of ln2 ≈  0.7 bits per binary synapse [3]. 

Therefore, the patterns are represented in the memories as 
binary sparse vectors of length n containing k active entities 
where k is usually much smaller than n. This allows us to 
effectively adapt the word recognition system for large 
vocabulary speech recognition tasks. 

The patterns are stored in the architecture by “Hebbian” 
learning rule [12]: 
 

k
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                                      (1) 

 
where M is the number of stored patterns, Xk is the input 
pattern and Yk is the address pattern.  
 In the architecture, different retrieval strategies are 
employed in different memories. 
 One of these strategies is one step retrieval with threshold, 
where the threshold is set to a global value. 
 

1Y k
j =  ⇔  θ≥j

kWX )(                               (2) 
 
where θ is the global threshold. 

A special case of this strategy is Willshaw's strategy, where 
the threshold is set to the number of ones in the binary input 
vector X. 

B.  Hidden Markov Models 
The HMMs are used to provide the input stream of 

subword-units to the word recognition network, e.g. word-
internal triphones composed of diphones, defined as p+pR 

(first phoneme with right context phoneme) or pL-p (last 
phoneme with left context phoneme), and triphones, defined 
as pL-p+pR (central phoneme with left and right context 
phonemes), where pL is the phoneme preceding p and pR is the 
phoneme following p.  

The topology of HMMs are three-state continuous 8-
Gaussian triphone models [1][2]. The design of the triphone 
models follows the standard flat start Baum-Welch 
reestimation strategy with decision tree based triphone 
creation and clustering [2]. The models are trained with the 
training set of TIMIT speech corpus [13] and our own speech 
data composed of 70 different simple command sentences like 
“bot show plum”, “but put red apple (to) plum”, each of which 
is spoken by 4 different speakers. For the implementation 
presented here, word-internal triphones are used as subword-
units. Therefore, in order to get a word-internal triphone-level 
transcription of the auditory input, a word-internal triphone-
level bigram language model is created with respect to the 

speech data. 

C.  Word Recognition Architecture 
Fig. 1 shows an overview of the architecture of the word 

recognition network. Each box in Fig. 1 corresponds to a 
heteroassociative memory. The word recognition network 
consists of 5 heteroassociative memories HM1-5 and an area 
HMO to represent the global output of the memories HM1-3.  

 

 
Fig. 1 Word recognition architecture based on heteroassociative 

memories 
 
The memories are interconnected with each other via 

hetero- and autoassociative connections. In Fig. 1, the dashed 
arrows denote autoassociative and solid arrows denote 
heteroassociative connections. 

All the heteroassociative memories except for HM5 consist 
of n neurons, where n is the number of word-internal 
triphones and the memory HM5 contains 200 neurons. The 
network receives the sequence of triphones recognized by 
HMMs and retrieves the word that matches the best. The 
memory HM1 serves as an input area and presents the 
triphone received from the HMMs to the network. HM2 
represents the triphone expected in the next step and predicts 
it with respect to the word hypothesis (or hypotheses) 
activated in the memory HM5 and the triphone(s) represented 
in the area HMO in the current step. The memory HM3 stores 
which triphones follow each other with respect to the words in 
our own training data.  

During retrieval, the outputs of the memories HM1-3 are 
summed up and a common threshold is applied.  This helps 
the network to correct the spurious triphones, which may 
cause ambiguities on the word level.  

The global output of the memories HM1-3 is then 
represented in the area HMO and is forwarded to HM4. The 
memory HM4 activates the triphones that have been 
processed by the network up to the current step. HM5 stores 
the words in the vocabulary using their word-interval triphone 
level transcriptions and is responsible for generating word 
hypotheses with respect to the triphones activated in HM4.  

It will be demonstrated how the word recognition network 
processes an example command sentence “bot lift red ball”. 
The corresponding word-internal triphone-level transcription 
generated by the HMMs is given “b+ow b-ow+t ow-t sp l+ih 
l-ih+f ih-f+t f-t sp b+r b-r+eh r-eh+d eh-d sp ao+l ao-l sp” 
where “sp”, which is used to determine the word boundaries, 
denotes “small pause” between words. In the example 
transcription, the phonetic transcriptions for the words “red” 
and “ball” were incorrectly recognized by HMMs. The correct 
transcriptions should have been “sp r+eh r-eh+d eh-d sp b+ao 
b-ao+l ao-l sp”. 
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Fig. 2 The processing of the first triphone “b+r” in the network 
 
Fig. 2 shows the word recognition system which processes 

the first word-internal triphone in the transcription part “b+r 
b-r+eh r-eh+d eh-d”. As shown in Fig. 2, the pattern “b+r" is 
activated in the memory HM1 and the memories HM2 and 
HM3 do not receive any input at the beginning of the word. 
Therefore, they do not activate any output neurons, consistent 
with the fact that no expectation can be generated in the 
beginning of the word recognition. After the first triphone 
has been stored in HM4, the word pattern “brown” is activated 
in HM5 with respect to the activated triphone in HM4. 

 

 
Fig. 3 The word recognition network after processing the second 

triphone “b-r+eh” 
 
In the next step (see Fig. 3), the second triphone “b-r+eh” 

enters the input area HM1 and the memory HM2 activates the 
triphone “b-r+aw” expected in the next step according to the 
activated word in HM5 and the triphones represented in 
HMO. HM2 and HM3 represent the triphones expected in the 
current step. After applying a global threshold, the resulting 
triphones are represented in HMO and are also stored in HM4. 
Then, the word pattern “brown” is activated with respect to 
word-interval triphones activated in HM4.  

The word recognition network processes the third word-
internal triphone “r-eh+d” in the same way (see Fig. 4) as in 
the previous step and the words “brown” and “red” are 
activated. 

 

 
Fig. 4 The word recognition network after processing the third 

triphone “r-eh+d” 
 
 
 

 
Fig. 5 The final word is activated after processing the last triphone of 

the word “eh-d” in the network 
 
As shown in Fig. 5, the last word-internal triphone of the 

word “eh-d” is activated in the area HM1 and the expected 
triphones are activated in the memories HM2 and HM3. The 
triphone having the highest activation is represented to HMO 
and then forwarded to HM4.  Finally, the word “red” is 
retrieved with respect to the word-internal triphones in HM4 
by applying a threshold. 
 

 
Fig. 6 The network receives the first triphone of the last word in the 

sentences 
 

Fig. 6 shows the processing of the last word transcription 
part “ao+l ao-l” in the HMM output. After processing the first 
word-internal triphone “ao+l”, the network can not generate a 
word hypothesis due to the fact that the activated assembly in 
HM4 can not activate any neuron in the memory HM5. 
Therefore, no word hypothesis is generated in the memory 
HM5.  

 

 
Fig. 7 The state of the network after processing the last triphone 

 
In the next step (see Fig. 7), the second word-internal 

triphone has been processed and a superposition of the 
assemblies “ball” and “wall” is activated with respect to the 
triphones in HM4. Since the network can not solve the 
ambiguity on subword-unit level, it generates a superposition 
of the word patterns which will be forwarded to the language 
processing system to resolve the ambiguity on sentence level 
[14]. By using a bidirectional connection which supports 
matching pairs of verbs and objects, in this case “lift” and 
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“ball”, the language system is able to successfully resolve the 
ambiguity. 

III. INCREMENTAL LEARNING 
In many speech recognition applications such as HMMs, it 

is usually impossible to increase the vocabulary size during 
performance, and if it is possible, many parameter files 
required for the application have to be changed and HMMs 
have to be re-trained. The network architecture presented here 
allows for a relatively easy enlargement of the vocabulary by 
learning of new words during performance. 

In the implementation, learning is triggered by a special 
command “this is X” where “X” is the novel word. First, 
HMMs preprocess the auditory input “this is X” to generate a 
plausible word-internal triphone sequence for the novel word. 
To this purpose, we have chosen a large bigram language 
model composed of TIMIT sentences and our simple 
command sentences. The word recognition network uses the 
command “this is” to start the learning process. During this 
process, the learning takes place in the heteroassociative 
memories HM2, HM3 and HM5. The memory HM2 stores the 
novel word using a randomly generated 5 out of 200 binary 
code vector (as input pattern) and a binary code vector (as 
output pattern) created with respect to the word-internal 
triphone sequence generated by HMMs for the new word. In 
the memory HM3, new associations are stored with respect to 
the information which triphones follow each other in the new 
word transcription. The memory HM5 stores the new word 
using the same binary code vectors in HM2. In HM5, the 
binary code vector with respect to the new word-interval 
sequence from HMMs is used as input pattern and the 
randomly generated 5 out of 200 binary code vector is used as 
output pattern. After learning, the new word can be used and 
processed exactly as the previously stored words. Thus the 
system can correctly recognize the word “apricot” in a 
sentence like “bot show apricot” after “apricot" has been 
learnt. 

IV. DISCUSSION 
A word recognition architecture based on neural associative 

memories and HMMs for a language processing system [14] is 
presented. The model deals with finding out the sequence of 
words from an input stream of subword-units (e.g. word-
internal triphones) generated by HMMs. 

It is also able to solve and represent the ambiguties that 
occur due to the fact that the HMMs can not correctly 
generate a subword-unit transcription of the spoken words. In 
this case, if it is not possible to make a unique decision on 
word level, then the ambiguity is kept on word level by 
creating a superposition of several alternative words and 
forwarded to a higher (sentence) level in the language 
processing system to be resolved using contextual information 
[7]. 

The word recognition system is constructed in such a way 
that it has the ability to enlarge its vocabulary by learning new 
words during performance. Compared to subword-units based 

standard hidden Markov models for word recognition, where 
adding a new word to the vocabulary involves the 
modification to the pronouncing dictionary and the language 
model, the presented architecture only requires a subword-
unit-level representation from the HMMs (the number of the 
new representations for the novel word can be more than one 
to increase the performance of the system) which is used to 
generate new patterns in the corresponding associative 
memories for the novel word. 

The type of the subword-units, the bigram language model 
used in the HMMs, and the size of the vocabulary have a large 
effect on the computational complexity, the memory 
requirements and the speed of the system. If the words have 
many overlaps in their subword-unit transcriptions, the 
computation time of the system is also increased. The speed of 
the system was analyzed in terms of short and long sentences 
on a standard computer (Intel Pentium 4 2.66 MHz). An 
application toolkit for HTK (HMM Toolkit) is used for the 
implementation of HMMs[15]. It takes 21 seconds for short 
sentences like “bot show plum”, whereas it is measured as 
around 38 seconds for long sentences like “bot put red apple 
(to) blue plum” and it takes 26 seconds to learn a new word in 
a sentence like “this is apricot”, most of which is taken for the 
HMMs to generate the subword-unit transcriptions. 

The recognition performance of the system has been 
evaluated on a small vocabulary of 43 different words. The 
test data is composed of 35 simple command sentences from 4 
speakers and there are totally 504 word tokens in the test set. 
On the test data the presented system recognized 98% of the 
word tokens, whereas HMMs achieved 96% [14]. 

Due to the large storage capacity of NAMs, this system can 
be extended to larger vocabularies. A larger speech corpus of 
279 German bus stop names has also been used. The training 
set consists of 14 speakers, whereas test set contains 5 
speakers, and each bus stop name is spoken by every speaker. 
The number of German triphones used to create the 
heteroassociative memories in the architecture is 1284. The 
architecture yielded a word recognition accuracy of 98%. 
Compared to a HMM based recognizer, which achieves 99% 
word recognition accuracy, there is a slight difference 
between the presented architecture and the pure HMMs [16]. 
This is due to the word-interval triphone HMMs and language 
model used. The performance of the presented model can be 
increased by using demisyllable or syllable HMMs as 
subword-units and a more efficient language model. 
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