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Abstract—In this study, production possibilities of hydrogen 

and/or methane via SCWG from black grape residues have been 
investigated. For this aim, grape residues which remain as a by-
product of the wine making process have been used. Since utilization 
from grape residues is limited due to the high moisture content, 
supercritical water gasification is the most convenient method. The 
effect of the gasification temperature and type of catalyst on 
supercritical water gasification have been investigated. Gasification 
experiments were performed in a batch autoclave at four different 
temperatures 300, 400, 500 and 600°C. K2CO3 and Trona 
(NaHCO3.Na2CO3·2H2O) were used as catalyst. Real biomass types 
of black grape residues have been successfully gasified and the 
product gas (hydrogen, methane, carbon dioxide, carbon monoxide 
and a small amount of ethane and ethylene) were identified by using 
gas chromatography. A TOC analyzer was used to determine total 
organic carbon (TOC) content of aqueous phase. The amounts of 
carboxylic acids, aldehydes, ketones, furfurals and phenols present in 
the aqueous solutions were analyzed by high performance liquid 
chromatography. When the temperature increased from 300°C to 
600°C,   mol% of H2 in gas products increased.  The presence of 
catalysts improves the hydrogen yield. Trona showed gasification 
activity to be similar to that of K2CO3. It may be concluded that the 
use of Trona instead of commercially produced catalysts, can be 
preferably used in the gasification of biomass in supercritical water. 
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I. INTRODUCTION 
HE objective of the investigation presented here is to 
support the utilization of waste and residual biomass for 

energy production and to produce a valuable gas for hydrogen 
production using supercritical gasification. The conversion of 
wet biomass under hydrothermal conditions is a suitable 
alternative to the classical gasification technologies, which 
require energy for drying the biomass.  

There are numerous methods for waste-to-energy 
conversion, including thermo chemical conversion such as 
gasification, pyrolysis, liquefaction and combustion. 
Supercritical water gasification (SCWG) is one of the most 
promising technologies for converting high moisture biomass 
to a pressurized and clean gas with high hydrogen content [1-
11]. The most important potential sources for wet biomass 
materials are unevaluated parts of all plants, vegetables and 
fruits residues which are being products of photosynthesis and 
they can be used for sustainable production of hydrogen.  
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Wet waste biomass streams available for the production of 
energy fuels are not suitable for classical gasification 
processes, because of their high water content (>70 %) [1]. By 
increasing of moisture content of biomass, energy production 
of different gasification technologies like gasification, 
pyrolysis and liquefaction decreases. 

Supercritical gasification offer attractive alternatives for the 
conversion of wet biomass to useful products. It is appropriate 
for production of both H2 and CH4 and these valuable gases 
can be generated at an elevated pressure. Pre-drying of 
biomass materials are not necessary, which is an energy and 
time consuming step. The other important advantages of 
SCWG are considered as follows: it is operated at lower 
temperatures, smaller reactor volumes are required because of 
high reaction rate, CO formation is very low, thus reforming 
process is not required, and formation of tar and coke is much 
lower. 

Supercritical water gasification process has attracted 
worldwide attention because of the characteristics of water as 
a reaction medium. Forschungszentrum Karlsruhe in 
Germany, National Institute for Resources and Environment in 
Japan, Hawaii Natural Energy Institute, U.S. Pacific 
Northwest Laboratory and other research centers have had 
many detailed studies on SCWG of some organic compounds 
to produce hydrogen [12-19]. Gasification of model 
compounds (cellulose, glucose, xylan and lignin) in 
supercritical water can be considered as a good model for the 
gasification of the more complex residues and wastes in 
supercritical water [20-23]. Serani et al. investigated 
supercritical water gasification of wine distillery wastewaters 
at various temperatures in a batch reactor [4]. In another work 
wastewaters from vinasses and alcohol distillery wastewater 
have been tested in a continuous flow system by SCWG. The 
influences of temperature, amount of catalysts addition on the 
gas phase were studied by Jarana et. al [11].  

In this study, sub-and supercritical water gasification of 
black grape residues were performed in a batch reactor system 
at a temperature range of 300-600°C. For this aim, grape 
residues which remain as a by-product of the wine making 
process have been used. The wine production resulting in a 
rest product with a moisture content of about 70-80%. Since 
utilization from grape residues is limited due to the high 
moisture content, supercritical water gasification is the most 
convenient method. The effects of the gasification temperature 
and type of catalyst on supercritical water gasification have 
been investigated. K2CO3 and natural mineral catalyst Trona 
(NaHCO3.Na2CO3·2H2O) were used as catalyst.   
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The effectiveness of naturally occurring mineral catalyst is 
important to the development of a commercial biomass 
gasification process. Use of these materials instead of 
commercially produced catalysts, would be more favorable to 
process economically. 

II.  EXPERIMENTAL 

A. Materials 
For the tests grape residues, which remain as a by-product 

of the wine making process (Yazgan Wine Factory, 
TURKEY) have been used. Grape residues were dried at 
open-air conditions. This biomass sample was grounded in a 
crush mill and sieved to obtain a particle size less than 500µm 
fraction. Elemental analysis of black grape residues were 
performed) in Laboratories of Izmir Institue of Technology 
using an elemental analyzer (CHNS-932 by Leco, MI-USA). 
Proximate and ultimate analysis of the biomass sample was 
given in Table I. Cellulose, hemicellulose and lignin content 
of biomasses were analyzed by method of P. J. Van Soest [24] 
and given in Table II.  

The supercritical water gasification of grape residues were 
performed without and with adding 10 wt.% of potassium 
carbonate (K2CO3) and Trona (NaHCO3.Na2CO3·2H2O) as 
catalyst. K2CO3 and Trona were dissolved in water to obtain 
concentration of 10%wt. Trona is mined as the primary source 
of sodium carbonate, it has replaced the Solvay process used 
in most of the world for sodium carbonate production. Purity 
of Trona as natural mineral catalyst was 89 wt. %, remaining 
part is moisture (10.4 wt. %) and insoluble fraction is SiO2 
(0.6 wt.%).  

 
TABLE I 

PROXIMATE AND ULTIMATE ANALYSIS OF GRAPE RESIDUE 
 Grape Residue 
Proximate analysis (dry, wt.%)  
Moisture 10.0 
Ash 5.98 
Crude Protein 12.15 
Ultimate analysis (dry, wt.%)  
C 51.30 
H 6.44 
N 1.96 
S 0.14 
O (from difference) 35.74 
K 2.46 
Ca 1.26 
Mg 0.19 
Al 0.11 
Fe 0.10 
Cr 0.01 
Cu 0.26 
Mn 0.01 
Zn 0.02 

 
TABLE II 

THE COMPOSITION OF GRAPE RESIDUE 
Components (daf, wt.%) Grape Residues 
Cellulose  15.19 
Lignin  42.83 
Hemicellulose  9.44 
Extractives 30.45 

B. Experimental Procedure 
The reactor was a batch-type device made of stainless steel 

with an internal volume of 100 mL and designed to with stand  
a pressure of 40 MPa and a temperature of 650°C. Inside the 
reactor there is a pipe in which thermocouple is fastened for 
temperature measurement. The temperature and pressure are 
controlled by the analogue manometer and thermocouple. 
Mixing was achieved by a motor-driven tumbling movement. 
In the tumbling reactor, hydrogen yield decreases when 
heating rate decreases. This heating rates and the final 
temperature are adjusted by a temperature controller with a 
PID controller. Schematic presentation of batch autoclave was 
given in a previous study [25].  

To examine the effect of temperature on the gas yield and 
composition, desired amount of grape residues (1.2g of 
biomass/15 ml of water) and 10 wt.% of catalysts (0.12 g) 
were well mixed and loaded into the reactor. And to see the 
catalyst effect, the experiments were performed without and 
with adding catalysts. 

After loading, the autoclave is flushed by nitrogen for 5 
min. to remove all air in the reactor. The reactor was heated to 
the desired temperature at 6 K min-1 and held at the reaction 
temperature using a PID temperature controller for 60 min. At 
the end of each run, the reactor was rapidly cooled by 
quenching in cold water and allowed to reach the room 
temperature. Volume of the gaseous product was measured by 
a gasometer after expansion to ambient pressure and gas 
samples were taken using gas tight syringes for analysis by 
gas chromatography. The gas volume was measured in ±10% 
accuracy. Liquid and solid products that remained in the 
reactor after gas sampling were washed out with water and 
filtrated to separate solid residue (coke). pH of aqueous 
products was lowered to 2 by addition of 1-2 drops of 
concentrated sulphuric acid, which was required to inhibit 
ionization of organic acids. After each experiment, reactor was 
washed with tetrahydrofuran (THF) and water to reduce 
plugging problems caused by solid material. THF was 
evaporated under vacuum by using a rotary evaporator and the 
amount of this product (tar) was found extremely low 
compared with the filtrated solid (char). Total of char and tar 
were called as residue. 

C. Analytical Methods 
Gas and liquid products were analyzed by gas 

chromatography (GC) and high performance liquid 
chromatography (HPLC). A gas chromatograph (HP 7890A, 
Wilmington–USA) was equipped with serially connected 
Hayesep Q 80/100 mesh (0.5 m long × 2 mm i.d.), Hayesep Q 
80/100 mesh (1.8 m long × 2 mm i.d.), Molsieve 5A 60/80 
mesh (2.4 m long × 2 mm i.d.), Hayesep Q 80/100 mesh (0.9 
m long × 2 mm i.d.), Molsieve 5A 60/80 mesh (2.4 m long × 2 
mm i.d.), DB-1 (pre-column) and HP-Plot Al2O3 S (25 m 
long × 0.32 mm i.d.) columns. Two thermal conductivity 
detectors (TCD) and a flame ionization detector (FID) were 
arranged serially. Helium was used as carrier gas and oven 
temperature program was in the following: the GC oven 
temperature was held at 60°C for 1 min., then ramped to 80°C 
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at a rate of 20°C/min, and ramped to 120°C at a rate of 
30°C/min, and finally held at 120°C for 2.66 min. A standard 
gas injection volume of 20 ml was injected twice for all gas 
samples. The concentration of the gas species was taken as an 
average of the two injections. The standard deviation is 
typically less than 2% of the reported value. GC was 
calibrated with standard gas mixture supplied by HatGaz 
Company in Kocaeli, Turkey. Gas products were identified by 
retention time and quantized by external calibration against 
the standard gas mixture. 

The obtained liquid phase was analyzed by HPLC system 
for the identification and quantification of the products. All 
HPLC analyses were carried out using a Shimadzu LC-20A 
series liquid chromatography device equipped with an Inertsil 
ODS-3 (250 mm length x 4.6 i.d.) column. The HPLC system 
consists of a DGU-20AS degassing module, LC-20AT 
gradient pump, CTO-10ASVP chromatography oven and 
SPD-20 multi-wavelength ultraviolet detector. Analysis of 
calibration standards was repeated for 5 times and calibration 
curves were prepared by plotting a linear regression of the 
average response factor versus analyze concentration. The 
amounts of carboxylic acids, aldehydes, ketones, furfurals and 
phenols were measured by the HPLC. Carboxylic acids, 
phenols and furfurals were analyzed according to Method I 
(mobile phases: A: 0.05 vol.% H3PO4 (pH: 2.25) B: 
CH3CN/H2O (80/20: vol./vol.), flow rate: 1 mL/min, detector: 
UV, low temperature gradient program of mobile phase and 
detector: 0 min 90% A and 10% B, 0 min detector wave-
length 210 nm, 5 min detector wavelength 290 nm, 7 min 
detector wavelength 285 nm, 11 min detector wavelength 278 
nm, 15 min detector wavelength 232 nm, 17 min 90% A and 
10% B, 19 min detector wavelength 290 nm, 25 min 65% A 
and 35% B, 27.5 min detector wavelength 290 nm, 55 min 
65% A and 35%, column temperature: 30 °C). The aldehydes 
and ketones were analyzed by applying Method II (mobile 
phases: A: water – B: methanol, flowrate: 1 mL/min, detector: 
UV (at 365 nm), low temperature gradient pro-gram of mobile 
phase: 0 min 35% A and 65% B, 5 min 35% A and 65% B, 15 
min 15% A and 85% B, 30 min 10% A and 90% B, column 
temperature: 30 ◦C). The aldehydes and ketones were 
derivatized to their hydrozone forms by addition of 2,4-
dinitrophenylhydrazine into aqueous samples. 2,4-
dinitrophenylhydrazone forms of aldehydes and ketones were 
separated by reversed-phase high-performance liquid 
chromatography as the same method described in the literature 
[26].  

For the interpretation of the carbon recovery of the 
experiment it was necessary to measure the carbon amount in 
all phases (gas, aqueous and solid phase). The aqueous phase 
was analyzed by a total organic carbon (TOC) analyzer 
(Shimadzu, model TOC-VCPH). Standard solutions for the 
calibration were prepared by using potassium hydrogen 
phthalate. Solid sample module of the TOC analyzer 
(Shimadzu TOC-VCPH-SSM-5000A) was used to determine 
the total organic carbon (TOC) content of the solid residue. In 
order to provide precise data, the samples were analyzed in 
three times, and the averages were reported as results. The 

concentration of total phenols was determined by using 
Jenway Colorimeter (Model 6051, UK). Light source is 
tungsten filament lamp and measurements were performed at 
470 nm. 

III. RESULTS AND DISCUSSION 
To examine the effect of temperature and catalyst type 

during hydrothermal gasification of grape residues, four runs 
were conducted over a temperature range from 300 to 600°C. 
In this paper, we present a study of the catalytic effect of 
potassium carbonate (K2CO3), and Trona catalysts for SCWG 
of grape residues. In the experimental tests, a reaction time of 
60 min has been applied, because the reaction time turned out 
to be sufficient to reach the maximum conversion at the lowest 
typical SCWG temperature under noncatalytic condition. 
Black Grape residues were carried out for the first time to 
investigate SCWG using a batch reactor. Experiments were 
performed in the absence and presence of 10 wt% catalysts. 
Since the experiments were repeated at least three times, the 
average yield could be evaluated and the reproducibility could 
be confirmed. 

Experimental results are presented in terms of gas yields 
(mol gas/kg grape residues) and carbon gasification efficiency 
(CGE, %). In this study, CGE is defined as the ratio of the 
total moles of carbon in the gas products to the moles of 
carbon in the biomass feed. For the calculation of the carbon 
recovery of the experiments, carbon amount measured in all 
phases (gas, aqueous and solid phase) and carbon balance of 
products closed within 95–99%. Carbon liquefaction 
efficiency (CLE) and Residue efficiency (RE) are calculated 
as the ratio of the total moles of carbon in the aqueous phase 
and in the solid phase, respectively, to the moles of carbon in 
the feed. The missing carbon in the balance may be due to by-
products such as sticky polymers formed and smeared on the 
inside walls of autoclave, cannot be analyzed. 

A. Effects of Temperature and Catalyst on Conversion of 
Biomass 

Fig. 1 shows the results of product efficiencies (CGE, CLE 
and RE). As expected the gasification was improved with 
temperature and by using catalyst. Fig. 1 depicts that K2CO3 
and Trona have similar catalytic activity for the CGE over the 
temperature range examined and their gasification efficiency 
increased to the values of 69.1 and 68.2% at 600°C, 
respectively. The onset temperature of the degradation 
reactions was lowered by alkali catalysts, which reduces the 
formation of residue (char/tar). In the presence of catalysts, 
CLE was found to be higher resulting with fewer residues 
(RE). The lowest RE at 600 °C and 20.0 MPa were found in 
the presence of Trona. 
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