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Weyl Type Theorem and the Fuglede Property
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Abstract—Given H a Hilbert space and B(H) the algebra of
bounded linear operator in H, let δAB denote the generalized
derivation defined by A and B. The main objective of this article
is to study Weyl type theorems for generalized derivation for (A,B)
satisfying a couple of Fuglede.
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I. INTRODUCTION

THe algebra of all bounded operators on a complex infinite

dimensional Hilbert space H will be denoted by B(H)
. For A,B ∈ B(H), let δAB : B(H) → B(H) and ΔAB :
B(H) → B(H) denote the itgeneralized derivation δAB =
AX −XB and the itelementary operator ΔAB = AXB−X.
Let dAB = δAB or ΔAB . If T is a bounded linear operator

on a normed linear space X , we have

ker(dAB) ⊥ �(dAB) ⇒
ker(dAB) ∩ cl(�(dAB)) = {0}
⇒ ker(dAB) ∩ �(dAB) = {0}

⇔ asc(dAB) ≤ 1

[1, Page 25]. Here asc(dAB) denotes the itascent of

dAB , cl(�(dAB)) denote the closure of the range of dAB

and ker(dAB) ⊥ �(dAB) denotes that the kernel of dAB is

orthogonal to the range of dAB in the sense of G. Birkhoff.

A normed linear subspace M is said to be orthogonal to a

normed linear subspace M in the sense of Birkhoff, written

as, M ⊥ N , if ‖m‖ ≤ ‖m+ n‖ for all m ∈ M and

n ∈ N . This concept of orthogonality is not symmetric, i.e.,

M ⊥ N does not imply N ⊥ M, but the concept does

agree with the usual concept of orthogonality in the case

in which X = H. The range-kernel orthogonality of dAB

has been considered by a number of authors, see ( [1], [2],

[3], [4], [5] and [6]). A sufficient condition guaranteeing

ker(dAB) ⊥ �(dAB) is that ker(dAB) ⊆ ker(dA∗B∗)
[3]. The inclusion ker(dAB) ⊆ ker(dA∗B∗), known in the

literature as the Putnam-Fuglede commutativity theorem.

Definition I. Let A,B ∈ B(H). We say that (A,B) is a

couple of Fuglede (Shortly, (A,B) ∈ FP ) if AX = XB
implies that A∗X = XB∗, for all X ∈ B(H).

Lemma II. ([7]) Let A,B ∈ B(H). Then the following

assertions equivalent.

(i) (A,B) is a couple of Fuglede.
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(ii) If AX = XB, then cl(�(X)) reduces A, ker(X)⊥

reduces B, and A|cl(�(X)), B|ker(X)⊥ are unitarily

equivalent normal operators.

Lemma III. ([8]) Let A,B ∈ B(H). If (A,B) is a couple

of Fuglede, then ker(dAB) ⊆ ker(dA∗B∗).

II. MAIN RESULTS AND THEIR PROOFS

Let A ∈ B(H) have the polar decomposition A = U |A|.
Then the first Aluthge transform Ã = |A| 12U |A| 12 , and if

Ã has the polar decomposition Ã = V |Ã|, then the second

Aluthge Â = |Ã| 12V |Ã| 12 . It is known that A, Ã and Â
have the same point spectrum, the same approximate point

spectrum and the same spectrum. Furthermore, Â has a

normal part if and only if A has a normal part.

Lemma IV. Let A,B ∈ B(H). If (A,B) ∈ FP , then

(A− λ,B) ∈ FP .

Proof. Suppose that (A,B) ∈ FP . Then

(A− λ)X = AX − λX = XB −Xλ = X(B − λ).

Now

(A− λ)∗X = (A∗ − λ)X = A∗X − λX

= XB∗ −Xλ since (A,B) ∈ FP

= X(B − λ)∗.

Hence (A− λ,B) ∈ FP.

Lemma V. ([9]) Let A,B ∈ B(H) be normal. If there

is a quasiaffinity X ∈ Δ−1
AB(0), then B is invertible and

X ∈ δ−1
AB(0).

Lemma VI.([9]) If A,B ∈ B(H) are normal, then

d−2
AB(0) = d−1

AB(0).

Lemma VII. Let A,B ∈ B(H). If (A,B) is a couple of

Fuglede, then ker(δAB − λ) ⊆ ker(δA∗B∗ − λ) for all λ ∈ C,
where λ denote the complex conjugate of λ.

Proof. Since (A,B) is a couple of Fuglede, it follows

from Lemma I that cl(�(X)) reduces A, ker(X)⊥ reduces

B, and A|cl(�(X)), B|ker(X)⊥ are unitarily equivalent normal

operators. Then with respect to the orthogonal decomposition

H = cl(�(X)) ⊕ �(X)
⊥

and H = ker(X) ⊕ ker(X)⊥, A
and B can be respectively represented as A = An ⊕ Ap

and B = Bn ⊕ Bp, where An, Bn are normal operators

and Ap, Bp are pure parts; now assume X ∈ ker(δAB − λ),
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X : ker(X)⊥ ⊕ ker(X) → cl(�(X)) ⊕ cl(�(X))⊥, have the

corresponding matrix representation X = [Xij ]
2
i,j=1. Then

ker(δAB−λ) =

(
(δAnBn

− λ)X11 (δAnBp
− λ)X12

(δApBn − λ)X21 (δApBp − λ)X22

)
= 0.

Since the operator An − λ (resp., Bn − λ) is normal. Since

cl(�(X)) reduces A, ker(X)⊥ reduces B, we have the pure

parts of A and B are injective. It follows from an application of

the Fuglede-Putnam property to (δAnBp
−λ)X12 = (δApBn −

λ)X21 = 0 that X12 = X21 = 0. Define the second Aluthge

transforms as above. Then

(δApBp − λ)X22 = 0 ⇐⇒ (δApTp − λ)Y = 0,

where we have set B̂∗∗ = Tp and Y =

|Ãp| 12 |Ap| 12X22|B∗
p |

1
2 |B̃∗

p |
1
2 . Since |Ãp| 12 , |Ap| 12 , |B∗

p |
1
2

and |B̃∗
p |

1
2 are quasiaffinities, which implies that X22 = 0

and X = X11 ⊕ 0. Since ker(δAnBn − λ) ⊆ ker(δA∗
nB

∗
n
− λ)

we have ker(δAB − λ) ⊆ ker(δA∗B∗ − λ) for all λ ∈ C.

Lemma VIII. If (A,B) ∈ FP and λ ∈ C, then

asc(δAB − λ) ≤ 1.

Proof. Let X ∈ (δAB − λ)−1(0). Then

AX − X(B + λ) = 0 = A∗X − X(B∗ + λ̄) implies

that �(X) reduces A and X−1(0)⊥ reduces B + λ. Since

X ∈ (dAB − λ)−1(0), we have AX and X(B + λ) ∈
(δAB − λ)−1(0), A∗AX = AX(B + λ)∗ = AA∗X and

X(B + λ)∗(B + λ) = A∗X(B + λ) = X(B + λ)(B + λ)∗.
Hence A1 = A|�(X)

and B1 = (B + λ)|X−1(0)⊥ are normal

operators.

Suppose now that Y ∈ (δAB − λ)−2(0). Set

(δAB − λ)Y = X, let X1 : X−1(0)⊥ −→ �(X) be

the quasiaffinity defined by setting X1h = Xh for each

h ∈ H and let Y : X−1(0)⊥ ⊕X−1(0) −→ �(X)⊕ �(X)
⊥

have the matrix representation Y = [Yij ]
2
i,j=1. Then

0 = δAB(X) = δA1B1
(X1) ⊕ 0 = δ2A1B1

(Y11) ⊕ 0. The

operators A1 and B1 being normal, it follows from Lemma

III that δA1B1
(Y11) = 0. Hence X = δA1B1

(Y11) ⊕ 0 = 0
implies (δAB − λ)(Y ) = 0 and so asc(δAB − λ) ≤ 1.

Let X be a complex Banach space. A Banach space

operator T ∈ B(X ) has the single-valued extension property,

or SVEP, at a point λ ∈ σ(T ) if for every open disc D
centered at λ the only analytic function f : D −→ X
satisfying (T − μ)f(μ) = 0 is the function f ≡ 0; T has

SVEP if it has SVEP at every λ ∈ σ(T ).
Corollary IX. If (A,B) ∈ FP , then δAB has SVEP.

Proof. The finite ascent property of (δAB − λ) implies

SVEP [10].

Remark. Recall from [11] that σ(δAB) = {λ ∈
σ(A)− σ(B) : λ = α− β, α ∈ σ(A) and β ∈ σ(B)}.

Theorem X. If (A,B) ∈ FP , then �(dAB − λ) is closed

for each λ ∈ iso σ(dAB).

Proof. Let λ ∈ iso σ(δAB). Then 0 ∈ iso σ(δAB − λ),
where σ(δAB −λ) = σ(A)−σ(B+λ). Hence σ(A)∩σ(B+
λ) consists of points which are isolated in both σ(A) and

σ(B + λ). In particular, σ(A) ∩ σ(B + λ) does not contain

any limit points of σ(A)∩ σ(B + λ). There exists a finite set

S = {α1, α2, · · · , αn} of distinct values αi such that S =
σ(A)∩ σ(B+ λ) and each αi, 1 ≤ i ≤ n, is an isolated point

of both σ(A) and σ(B + λ. Let

H1 =
n∨

i=1

(B − αi)
∗−1

(0), H ′
1 =

∨n
i=1(A− αi)

−1(0),

H2 = H�H1 and H ′
2 = H�H ′

1.

Then A and B have the direct sum decompositions A =
A1⊕A2 and B = B1⊕B2, where A1 = A|H′

1
and B1 = B|H1

are normal operators. Let X = [Xij ]
2
i,j=1, it is seen that

(δAB − λ)X =

(
(δA1B1

− λ)X11 (δA1B2
− λ)X12

(δA2B1 − λ)X21 (δA2B2 − λ)X22

)
,

where A2 = A|H′
2
, B2 = B|H2 and σ(Ai)∩σ(Bi+λ) = ∅ for

all 1 ≤ i, j ≤ 2 such that i, j �= 1 and so that 0 /∈ σ(δAB −λ)
for all 1 ≤ i, j ≤ 2 such that i, j �= 1. Therefore, �(δAB − λ)
is closed.

III. THE OPERATOR dAB AND WEYL’S THEOREM

Let us denote by α(T ) the dimension of the kernel and by

β(T ) the codimension of the range. Recall that the operator

T ∈ B(X ) is said to be itupper semi-Fredholm, T ∈ SF+(X ),
if the range of T ∈ B(X ) is closed and α(T ) < ∞, while

T ∈ B(X ) is said to be lower semi-Fredholm, T ∈ SF−(X ),
if β(T ) < ∞. An operator T ∈ B(X ) is said to be

itsemi-Fredholm if T ∈ SF+(X ) ∪ SF−(X ) and Fredholm

if T ∈ SF+(X ) ∩ SF−(X ). If T is semi-Fredholm then

the itindex of T is defined by ind (T ) = α(T ) − β(T ). A

bounded linear operator T acting on a Banach space X is

itWeyl if it is Fredholm of index zero and Browder if T is

Fredholm of finite ascent and descent. The Weyl spectrum

σw(T ) and Browder spectrum σb(T ) of T are defined by

σw(T ) = {λ ∈ C : T − λI is not Weyl} and σb(T ) = {λ ∈
C : T − λI is not Browder}. Let E0(T ) = {λ ∈ isoσ(T ) :
0 < α(T −λ) < ∞} and let π0(T ) := σ(T ) \σb(T ) all Riesz
points of T . According to Coburn [12], Weyl’s theorem holds

for T if σ(T ) \ σw(T ) = E0(T ), and that Browder’s theorem

holds for T if σ(T ) \ σw(T ) = π0(T ). Let SF−
+ (X ) =

{T ∈ SF+ : ind (T ) ≤ 0}. The upper semi Weyl spectrum
is defined by σSF−

+
(T ) = {λ ∈ C : T − λ /∈ SF−

+ (X )}.

According to Rakočević [13], an operator T ∈ B(X ) is said

to satisfy a-Weyl’s theorem if σa(T ) \ σSF−
+
(T ) = E0

a(T ),

where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}. It

is known [13] that an operator satisfying a-Weyl’s theorem

satisfies Weyl’s theorem, but the converse does not hold in

general.

In the following we prove that if (A,B) ∈ FP , then δAB

satisfies the property that its quasinilpotent part H0(dAB−λ),

H0(δAB − λ) = {X ∈ B(H) :

lim
n→∞ ‖(δAB − λ)nX‖ = 0}
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equals (δAB−λ)−1(0) for all λ ∈ isoσ(δAB). This implies

that δAB satisfies Weyl’s theorem, δ∗AB satisfies a-Weyl’s

theorem.

Lemma XI. If (A,B) ∈ FP , then H0(δAB − λ) =
(δAB − λ)−1(0) for all λ ∈ isoσ(δAB).

Proof. Evidently, the non-zero points αi (resp.,β), 1 ≤ i ≤
m, are normal eigenvalues of A (resp., B∗). Let M1i = (A−
αi)

−1(0), N1i = (B − Bi)
−1(0) (= (B − βi)

∗−1

), M1 =⊕m
i=1 M1i, N1 =

⊕m
i=1,M2 = M⊥

1 and N2 = N⊥
1 ; let A =

A1 ⊕ A2 ∈ L(M1 ⊕M2) and B = B1 ⊕ B2 ∈ L(N1 ⊕N2).
Then σ(A2) = σ(A) \ {α1, · · · , αm} and σ(B2) = σ(B) \
{β1, · · · , βm} λ /∈ σ(δAkBt) for all 1 ≤ k, t ≤ 2 other than

k = t = 1.

Let X ∈ H0(δAB−λ), and let X ∈ L(N1⊕N2,M1⊕M2)
have the representation X = [Xij ]

2
i,j=1. Then

(δAB − λ)nX =

( ∗ ∗
(δA2B2 − λ)nX22

)
(for some, as yet, non specified entries

∗). Since lim
n→∞ ‖(δAB − λ)nX‖ 1

n = 0 implies

lim
n→∞ ‖(δA2B2

− λ)nX22‖
1
n = 0, and since δA2B2

− λ is

invertible, we have X22 = 0, and then

(δAB − λ)nX =

( ∗ (δA1B2
− λ)nX12

(δA2B1 − λ)nX21 0

)
(for some, as yet, non specified entry

∗). Again, lim
n→∞ ‖(δAB − λ)nX‖ 1

n = 0

implies lim
n→∞ ‖(δA1B2 − λ)nX12‖

1
n =

lim
n→∞ ‖(δA2B1

− λ)nX21‖
1
n = 0, and since δA1B2

− λ and

δA2B1
− λ are invertible, we have X12 = 0 = X21.

Hence, (δAB − λ)nX = (δA1B1 − λ)nX11. Let

X11 = [Yij ]1≤i,j≤m ∈ L(⊕m
i=1 N1i,

⊕m
i=1 M1i). Then,

for 1 ≤ i, j ≤ m,

(dA1B1
− λ)n(X11) = ((LA1−αi

−RB1−βj
) +

(αi − βj − λ))n[Yij ]1≤i,j≤m

=

(
n∑

k=0

(
n

k

)
(LA1−αi −RB1−βj )

k

×(αi − βj − λ)n−k
)
[Yij ]1≤i,j≤m

where we have set LA1−αi
RB1

+ αiRB1−βj
= T. Since

(A− αi)|M1i = 0 = (B1 − βi)|N1i , it follows that

(δA1B1 − λ)n(X11) = (αi − βj − λ))n[Yij ]1≤i,j≤m

Recall, lim
n→∞ ‖(δA1B1 − λ)nX11‖

1
n = 0; hence

lim
n→∞ |αi − βj − λ| ‖Yij‖

1
n = 0. Thus Yij = 0

for all i, j such that i �= j. This implies that

X = X11 =
⊕m

i=1 Yij ∈ (δAB − λ)−1(0). Hence

H0(δAB − λ) ⊂ (δAB − λ)−1(0). Since the reverse

inclusion holds for every operator, we must have

H0(δAB − λ) = (δAB − λ)−1(0).

For an operator T ∈ B(X ), the analytic core K(T − λ) of

T − λ is defined by

K(T − λ) = {x ∈ X : there exists a sequence

{xn} ⊂ X and δ > 0 for which

x = x0, (T − λ)xn+1 = xn and

‖xn‖ ≤ δn ‖x‖ for all n = 1, 2, · · · }.
We note that H0(T − λ) and K(T − λ) are generally

non-closed hyperinvariant subspaces of T − λ such that

(T − λ)−q(0) ⊆ H0(T − λ) for all q = 0, 1, 2, · · · and

(T − λ)K(T − λ) = K(T − λ) [14]. Recall from [14]

that if 0 ∈ isoσ(T ), then H0(T ) and K(T ) are closed and

X = H0(T )⊕K(T ).
Theorem XII. If (A,B) ∈ FP , then δAB satisfies Weyl’s

theorem and δ∗AB satisfies a-Weyl’s theorem.

Proof. Let λ ∈ isoσ(dAB). Then by Lemma III, H0(δAB−
λ) = (δAB − λ)−1(0) implies

B(H) = H0(δAB − λ) ⊕K(δAB − λ)

= (δAB − λ)−1(0) ⊕K(δAB − λ).

Hence

�(δAB − λ) = 0⊕ (δAB − λ)(K(δAB − λ))

= K(δAB − λ)

and

B(H) = (δAB − λ)−1(0)⊕�(δAB − λ).

Thus, isolated points of σ(δAB) are simple poles of the

resolvent of δAB (i.e., δAB is simply polaroid). Observe

from the argument above that if we let π0(δAB) denote

the set of finite rank poles of the resolvent of δAB , then

π0(δAB) = E0(δAB). Since δAB has SVEP by Lemma II

, it follows that δAB satisfies Weyl’s theorem [15, Theorem

3.85], i.e., σ(δAB) \ σw(δAB) = E0(δAB).
Since δ∗AB has SVEP, σ(δAB) = σ(δ∗AB) = σa(δ

∗
AB) (see

[10, Proposition 1.3.2]), which implies E0(δ∗AB) = E0
a(δ

∗
AB).

Again, since λ /∈ σSF−
+
(δ∗AB) if and only if δ∗AB − λ is

upper semi-Fredholm and ind (δ∗AB − λ) ≤ 0, and since

δAB has SVEP and δ∗AB − λ is upper semi-Fredholm implies

ind (δ∗AB − λ) ≥ 0, λ /∈ σSF−
+
(δ∗AB) implies λ /∈ σw(δ

∗
AB),

and this, since σSF−
+
(T ) ⊆ σw(T ) for every operator T ∈

B(X ), implies σSF−
+
(δ∗AB) = σw(δ

∗
AB) = σw(δAB). As seen

above, δAB is simply polaroid; hence δ∗AB is simply polaroid,

with π0(δAB) = π0(δ∗AB). This implies that E0(δAB) =
π0(δAB) = π0(δ∗AB) ⊆ E0(δ∗AB) = E0(δ∗AB). Since λ ∈
E0(δ∗AB) implies λ ∈ isoσ(δAB) and so λ ∈ π0(δAB), it

follows that E0(δAB) = E0
a(δ

∗
AB). Hence,

E0(δAB) = σ(δAB) \ σw(δAB)

= σa(δ
∗
AB) \ σSF−

+
(δ∗AB)

= E0
a(δ

∗
AB),

i.e., δ∗AB satisfies a-Weyl’s theorem.
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Recall from [13] that an operator T ∈ B(X ) is said to be

obeys property (w) if σa(T ) \ σSF−
+
(T ) = E0(T ). From the

proof of Theorem III, we have

Corollary XIII. If (A,B) ∈ FP , then δ∗AB satisfies

property (w).

For a Banach space operator T , let H(σ(T )) denote the set

of functions which are holomorphic on an open neighborhood

of σ(T ).

Corollary XIV. If (A,B) ∈ FP , then f(δAB) satisfies

Weyl’s theorem and f(δ∗AB) satisfies a-Weyl’s theorem for

every f ∈ H(σ(δAB)).

Proof. It follows from Theorem III that δAB satisfies Weyl’s

theorem. That is,

σ(δAB) \ E0(δAB) = σw(δAB).

Now the polaroid property of δAB implies, [15, Lemma 3.89],

that

f(σ(δAB) \ E0(δAB)) = σ(f(δAB)) \ E0(f(δAB))

for every f ∈ H(σ(δAB)). Also, since δAB has SVEP,

f(σw(δAB)) = σw(f(δAB))

for every f ∈ H(σ(δAB)). Hence,

σ(f(δAB)) \ E0(f(δAB)) = f(σ(δAB)) \ f(E0(δAB))

= f(σ(δAB) \ E0(δAB))

= f(σw(δAB)) = σw(f(δAB)).

That is, f(δAB) satisfies Weyl’s theorem.

To prove that f(δ∗AB) satisfies a-Weyl’s theorem, we recall

that δAB is polaroid if and only δ∗AB is polaroid, δ∗AB is isoloid.

Applying [15, Lemma 3.89], it thus follows that

f(σ(δ∗AB)) \ f(E0(δ∗AB)) = σ(f(δ∗AB)) \ E0(f(δ∗AB)).

Again, since δAB has SVEP implies f(δAB) has SVEP [15,

Theorem 2.39],

σ(f(δAB)) = σ(f(δ∗AB)) = σa(f(δ
∗
AB)),

E0(f(δ∗AB)) = E0
a(δ

∗
AB)

σw(f(δAB)) = σw(f(δ
∗
AB)) = σSF−

+
(f(δ∗AB))

and σSF−
+
(f(δ∗AB)) = f(σSF−

+
(δ∗AB))

[15, Corollary 3.72]. Thus δ∗AB satisfies a-Weyl’s theorem,

we have that

σa(f(δ
∗
AB)) \ E0

a(f(δ
∗
AB)) = f(σ(δ∗AB) \ E0(δ∗AB))

= f(σw(δ
∗
AB))

= σSF−
+
(f(δ∗AB)).

That is, f(δ∗AB) satisfies a-Weyl’s theorem.

IV. CONCLUSION

In this paper we investigated Weyl’s type theorems for

generalized derivation for (A,B) satisfying a couple of

Fuglede. Many questions are raised by this work. First one

such, the examination of the conditions which enable one to

easily apply the Weyl types theorems and Fuglede-Putnam

theorem, we have discussed, which are mostly stated as

purely mathematical results. The second question of which

our theorems can give constructive proofs. Other questions

can be posed and indeed all are under investigation and will

be considered elsewhere.
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