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Weakly generalized closed map
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Abstract: In this paper we introduce a new class of
mg-continuous mapping and studied some of its basic
properties.We obtain some characterizations of such
functions. Moreover we define sub minimal structure
and further study certain properties of mg-closed sets.
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1. Introduction

Levine [9] introduced the concept of g-closed sets and
studied their properties. A subset A of a space X is
g-closed if and only if ¢l(A) C O whenever A C O and
O is open. Hence every closed set is a g-closed set. The
union and intersection of two g-closed set is g-closed
set. Regular open sets and stronger regular open sets
have been introduced and investigated by Stone[19] and
Tang[21] respectively. Complements of regular open
sets and strong regular open sets are called regular
closed sets and strong regular closed sets. Andrijecvic
[1], Arya and Nour[2], Bhattacharya and Lahiri[5],
Levine[9],[10],Mashour et al[13] and Njastad[17] intro-
duced and investigated semi-preopen sets, generalized
semi open sets, semi generalized open sets, generalized
open sets, semi-open sets, pre-open sets, generalized
open set, semi-open sets pre-open sets and a-open sets
which are some of the weak forms of open sets and the
complements of theses sets are called the same types
of closed sets respectively. Ganster and Reilly [8] have
introduced locally closed sets which are weaker than
both open and closed sets. Cameron[6] has introduced
regular semi-open sets which are weaker than regular
open sets.
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2. Preliminaries

In this section we begin by recalling some definitions and
properties.

Let (X,7) be a topological spaces and A be a sub-
set. The closure of A and interior of A are denoted by
cl(A) and int(A) respectively. We recall some generalized
open sets.

Definition [9] 2.1: A subset A of a space X is
g-closed if and only if cl(A) C G whenever A C G and G
is open.

Definition [20]2.2: A map f : X — Y is called
g-closed if each closed set F of X, f(F) is g-closed in Y.

Definition[18]2.3: A mapf X — Y is called
semi-closed if each closed set F' of X, f(F') is semiclosed
inY.

Definition [15] 2.4 : A map f : X — Y is called
a-open if each open set F of X, f(F) is a-set in Y.

Definition [7]2.5 : A map f : X — Y is called
pre-closed if for each closed map F of X, f(F) is pre-
closed in Y.

Definition [12]2.6: A map f : X — Y is called
regular-closed if for each set F of X, f(F) is regular
closed in Y.

Definition (11)2.7: A map f : X — Y is said to
be strongly continuous if f~*(V') is both open and closed
in X for each subset V of Y.

Definition [4] 2.8:A map f : X — Y is said to
be generalized continuous if f~!(V) is g-open in X for
each set V of YV

Definition [15] 2.9 A subset Aof a topological
space X is said to be weakly generalized closed (wg-
closed) set in X if G contains cl(int(A)) whenever G
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contains A and G is open in X.

Definition[9] 2.10A topological space X is said
to be T'1/2-space if every g-closed set is closed.

Remark:2.11: The following diagram are well known.

closed = g — closed w — closed

7

< «a — closedset

N

Pre — closedset

regularclosed = wg — closed

gsp — closedset
3.Properties of Weakly generalized closed

In this section we studied some of wg-closed sets proper-
ties.

Definition 3.1: A map f : X — Y is called wg-
closed map if for each closed set F of X, {(F) is wg-closed
set.

Remark 3.2: Every g-closed map is a wg-closed
map and the converse is need not be true from the
following example.

Example3.3:Let X = {a,b,¢} and 7

{¢,2,{a}, {b}.{a,b}},72 = {¢. X, {a},{a,b}} be t0p010-
gies on X. Let {a,c} is T}-closed but not Th-closed.

Theorem 3.4: A map f : X — Y is wg-closed if
and only if for each subset S of Y and for each open set
U containing f~!(S) there is a wg-open set V of Y such
that S CV and f~1(V) CU

Proof: Suppose f is wg-closed. Let S be a subset
of Y and U is an open set of X such that f~1(S) C U.
Then V =Y — f~1(X — U)is a wg-open set containing S
such that f~1(V) C U.

For the converse suppose that F'is a closed set of X. Then
7YY —f(F)) C X — F and X — F is open. By hypoth-
esis there is wg-open set V of Y such that Y — f(F) C V
and f~}(V) C X — F. Therefore F C X — f~1(V).
Hence Y —V C f(F) C f(X — f~Y(V)) C Y — V which
implies f(F) =Y — V. Since Y — V is wg-closed if f(F)
is wg-closed and thus f is a wg-closed map.

Theorem 3.5:1f f X — Y is continuous and
weg-closed and A is a wg-closed set of X then f(A) is

wg-closed.

proof:Let f(A) C O where O is an open set of Y.
Since f is g-continuous, f~'(0) is an open set containg
A. Hence cl(A) C f~4O) is A is wg-closed set. since
f is wg-closed, f(cl(A)) is a wg-closed set contained in
the open set O which implies than cl(f(CI(A)) C O and
hence clf(cl(A)) C O and hence cl(f(A)) C Oso fisa

wg-closed set.

corollary 3.6: If f : X — Yis g-continuous and
closed and A is g-closed set of X the f(A)is wg-closed.

Corollary 3.7: If f X — Y is wg-closed and
continuous and A is wg-closed set of X then f4: A —Y
is continuous and wg-closed set.

Proof Let F be a closed set of A then F is wg-
closed set of X. From above theorem 3.5 follows that
fa(F) = f(F) is wg-closed set of Y. Here f4 is wg-closed
and continuous.

Theorem 3.8 If a map f: X — Y is closed and a map
g:Y — Z is wg-closed then f: X — Zis wg-closed.

Proof Let H be a closed set in X. Then f(H) is
closed and (g o F)(H) = ¢g(f(H)) is wg-closed as g is
weg-closed. Thus g o f is wg-closed.

Theorem 3.9:If f : X — Y is continuous and wg-closed
and A is a wg-closed set of X then f4 : A — Yis
continuous and wg-closed.

Proof:If F is a closed set of A then F is a wg-
closed set of X. From Theorem 3.4, It follows that
fa(F) = f(F) is a wg-closed set of Y. Hence fa is
weg-closed. Also f4 is continuous.

Theorem 3.10:If f X — Y is wg-closed and
A = f~1(B) for some closed set B of Y then f4: A —Y
is wg-closed .

Proof: Let F be a closed set in A. Then there is
a closed set H in X such that F = A N H. Then
fa(F) = f(AnH) = f(H) N f(B). Since f is wg-closed
f(H) is wg-closed in Y. so f(H)N B is wg-closed in Y.
Since the intersection of a wg-closed and a closed set is
a wg-closed set. Hence f4 is wg-closed.
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Remark 3.11: If B is not closed in Y then the above
theorem is not hold from the following example.

Example 3.12: Take B = {a,b}. Then
A = f7Y(B) = {a,b} and {a} is closed in A
butfa({a}) = {a} is not wg-closed in Y.{a} is also
not wg-closed in B.

4. Normal and Regularity

In this section we introduce the new class of wg-regular
and studied some of its properties.

Theorem 4.1: If f : X — Yis continuous , wg-
closed map from a normal space X onto a space Y then
Y is normal.

Proof: Let A, B be disjoint closed sets in Y. Then
f1(A), f~1(B) are disjoint closed sets of X. Since X is
normal there are disjoint open sets U, Vin X such that
f~Y(A) Cc U and f~%(B) C V. Since f is wg-closed by
theorem 3.4, there are wg-open sets G,H in Y such
that A C G,B C H and f~1(G) C Uand f~1(H) C V.
Since U,V are disjoint intG,intH are disjoint open sets.
Since G is wg-open, A is closed and A C G, A C intG.
similarly B C intH. Hence Y is normal.

Theorem 4.2:If f : X — Y is an open continuous
wg-closed surjection, where X is regular thenY is regular.

Proof: Let U be an open set containing a point P
in Y. Let X be a point of X such thatf(X) = P.
Since X is regular and f is continuous there is an
open set U such that = € V C (V) C f~1(V).
Hence P € f(V) c f(Cl(V)) C U. Since f is wg-
closed f(CI(V)) is weg-closed set contained in the
open set U. It follows thatcl(f(Cl(V)) C U and
hencep € f(V() C cl(f(V)) C Uand f(V) is open. Since
f is open. Hence Y is regular.

Remark 4.3: The normality is preserved under
regular closed, continuous and surjective.

Example 4.4:In the example 3.12. It is shown
that f is wg-closed {a,b} is a regular closed set in
(X, 7)and it is not closed in (X, 72). Hence f is not
regular closed.

Example 4.5 Let T} be the countable complement
topology on the real line R and T, be the usual topology
on R and f : (R,T1) — (R,T%) be the identity map.
Then f is regular closed by the remark immediately
after the above example. But f is not wg-closed. For
ifA = {1/n,n € N} then A is closed in (R,77) and
f(A) = A is not wg-closed as f(A) C (0,2) and (0,2) is
open in (R, Ty). But clf(A) C (0,2).

Theorem 4.6:If A is wg-closed set of a space X
then IndA < IndX

Proof: It suffices to show that if IndX < n and A
is wg-closed set of X then IndA < n. We prove this
theorem by induction. The result holds trivially for
n=1. Assume that for every wg-closed set A of X ind
X<n—-1=Ind<n-1.

Let X be space with Ind < n. Let A be a wg-
closed set of X. Let E be a closed set of A and G be
an open set of A such that £ C G. Then there exist
a closed set F of X and an open set H of X such
that E = ANF and G = AN H. Since E is closed
in A and A is wg-closed. Since IndX < n, there
is an open set V of X such that ¢/lE C V C Hand
Indbd(V) <n—1. Then V N A is an open set of A such
that E C VN A C G and bda(V NA) C bd(V). Now
bda(V N A) is a wg-closed set of bd(V). By induction
hypothesis and Indbda(VNA) < n—1. Hence IndA < n.

Theorem 4.7: If A is a wg-closed set of a space X then
dime A < dimX.

Proof If dimX = 0 then dimA < 0 = dimX. Hence
dimA < dimX.

If dimX < 0 then dimX = n, where n is an integer
greater than or equal to -1. If n = —1dimX = —1
which implies thatX = ¢ and hence A = ¢ and
dimA = —1 = dimX and thus dimA < dimX.

Next suppose dimX = n where n > —1 and let A
be a wg-closed set of X. Let {uj,us,us,..ur} be a
finite open cover of A. Then for: = 1,2,3,...Kthere
exist open sets.V; of X such that u; = AN Vj. Since
A is wg-closed and U;;l v; is an open set containing
A, clA C Ufil pv;Since cl(A) is a closed set,dimcl(A) <n
so the finite open cover {clANwv;,i =1,2,3,..k}cl(A) has
a refinement cl(A) Nw;,i=1,2,3,..k or order at most
n + 1, where each w; is open in X and clAw; C clANV;
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for each i. Then {ANuw;) : i = 1,2,...} is an open
cover of A refining {u;,7 = 1,2,3,...k} and of order not
exceeding n + 1. Hence dimA < m which implies that
dimA dim X.

Theorem 4.8:If A is a wg-closed set of a space X
then DindA < DindX.

Proof Let X be a space such that DindX = n
and A be a wg-closed set of X. By using the no-
tations of the above thoerem, clA C |JVi. Since
clA is a closed set,DindA < n. Hence for ev-
ery open cover V;NclA;i=1,2,3...k there is a
disjoint  family W;,J=1,2,3,..k of open sets
clA refining V;NeclA,i=1,2,3,...k and such that
Dind(clA — U§:1 W;) < n—1 But A — U?:l W, C
clA— U,’;zl Wand A — U§:1 W;=AnN(clA—- U?:l w;)is
a wg-closed set of clA as the intersection of wg-closed set
and closed set is a wg-closed set. By induction hypothesis
Dind(A—s_, W;) <n—1. Also W; N A, j = 1,2,3..kis
a disjoint family of open sets of A refining w1, Us, ...Uy.
Thus DindA < nand the theorem is proved.
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