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Abstract—For cognitive radio networks, there is a major 
spectrum sensing problem, i.e. dynamic spectrum management. It is 
an important issue to sense and identify the spectrum holes in 
cognitive radio networks. The first-order derivative scheme is usually 
used to detect the edge of the spectrum. In this paper, a novel 
spectrum sensing technique for cognitive radio is presented. The 
proposed algorithm offers efficient edge detection. Then, simulation 
results show the performance of the first-order derivative scheme and 
the proposed scheme and depict that the proposed scheme obtains 
better performance than does the first-order derivative scheme. 
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I.  INTRODUCTION 
 cognitive radio (CR) network is a novel idea of wireless 
communications to solve the dynamic spectrum problem 
[1, 2]. The major objectives of the cognitive radio 

network are highly reliable communication for users and more 
efficient utilization of the radio spectrum [3]. Cognitive radio 
networks can sense and predict the environments and serve 
target users without interference to other users [4]. Spectrum 
sensing involves several tasks [3, 5], i.e. radio-spectral 
estimation and detection, radio-spectral resolution, channel 
estimation and prediction, and system reconfiguration. 
Therefore, one of the most important issues for cognitive radio 
networks is dynamic spectrum management, which has to 
estimate and detect for sensing and identifying radio spectrum. 

There are a lot of researches for cognitive radio dynamic 
access techniques [5, 6], e.g. matched filter, energy detection, 
cyclostationary feature detection, and wavelet-based edge 
detection. For matched filter, it is the most accuracy but 
requires high computational complexity and perfect knowledge 
of the target users. Energy detection is the most common 
scheme of spectrum sensing with low computational 
complexity. However, some issues for energy detection have to 
be challenged, including threshold selection for detecting 
target users, identification between target users and 
interference, and poor performance under low SNR. 
Cyclostationary feature detection is to detect the target users by 
utilizing the cyclostationary feature of the observed signals.  
Cyclostationary feature detection can distinguish not only 
interference from the target users but also among different 
types of transmission scenarios and users. 
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However, there is a little high computational complexity for 
cyclostationary feature detection. For wavelet-based edge 
detection, wavelet transform is powerful to analyze local 
spectrum and identify characteristic and edges with low 
computational complexity.  

There are some researches which focus on wavelet-based 
spectrum sensing [7, 8]. One of these researches [7] uses the 
wavelet transform to reduce computational complexity and 
utilizes the first-order derivative scheme to detect edge. The 
first-order derivative scheme can detect frequency boundaries 
accurately at high SNR but has worse performance at low 
SNR. Therefore, this paper proposes that the Hilbert Transform 
is used for edge detection. The Hilbert Transform is usually 
utilized to analyze the harmonic function. The average power 
spectrum density (PSD) within each sub-band, which is needed 
to be identified, is estimated by using a simple estimator, and it 
has to determine the occupied bands by the estimated PSD. 
Then, the performance of the proposed algorithm in term of 
edge detection is simulated and compared with that of the first-
order derivative scheme [7], while the different SNR is 
considered. 

The remainder of this paper is organized as follows. Section 
2 introduces the spectrum sensing problem, the wavelet 
transform of the sensing signals and a simple estimator of 
PSD. Section 3 shows wavelet-based spectrum sensing using 
Hilbert Transform. Section 4 shows the simulation results of 
the first-order derivative scheme and the proposed scheme, and 
Section 5 draws the conclusion for this work. 

II. PRELIMINARY 

A. Problem Formulation for Spectrum Sensing  
In order to identify spectrum holes, a CR system is used to 

sense the wireless environment. It is assumed that the observed 
signal received by the CR system occupies N spectrum bands, 
whose frequency position and PSD levels have to be detected 
and identified. These spectrum bands locate between f0 and fN, 
and their frequency boundaries locate at f0<f1<…<fN. Fig. 1 
shows the PSD structure of a wideband signal with the n-th 
band defined by { }nnnn fffBfB <≤∈ −1:: , n=1, 2, …, N. 
The following basic assumptions are adopted in this work. 
First, the CR system knows the spectrum boundaries f0 and fN. 
For the CR system, the observed signal may occupy a wider 
band, but this work only analyzes the interesting spectrum 
between f0 and fN. Second, N spectrum bands and the positions 
f1,..., fN−1 are unknown to the CR system. These environment 
parameters keep on within a time burst but may change in next 
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time burst. Third, there is a jump at the edge of each band, and 
these edges have to be identified. Finally, The additive white 
Gaussian noise (AWGN) with zero mean and two-sided PSD 
Sw(f)=N0/2 is considered in this work. 

The PSD of the observed signal r(t) in the CR system can be 
written as 

( ) ( ) ( )fSfSfS w

N

n
nnr +=∑

=1

2α , [ ]Nfff  ,0∈            (1) 

where Sn(f) is the n-th signal spectrum, and 2
nα  is the signal 

power density within the n-th band. The PSD Sr(f) is F{Rr(τ)}, 
where the autocorrelation function Rr(τ) is equal to 
E{r(t)r(t+τ)} and F{·} is Fourier Transform. The 
corresponding time-domain signal r(t) with Sr(f) can be 
represented as 

( ) ( ) ( )∑
=

+=
N

n
nn twtxtr

1

α ,                        (2) 

where xn(t) is the time-domain signal with Sn(f), and w(t) 
denotes the AWGN with Sw(f). Then, xn(t) occupying the n-th 
band can be expressed as  

( ) ( )∑∞

−∞=
−=

k
tfj

skn
ncekTtpstx ,2π ,                  (3) 

where sk is the k-th modulated symbol, p(t) is a pulse shaper 
with the bandwidth (fn−fn−1), and fc,n = (fn−1+fn)/2 is the center 
frequency of the n-th band. The shape of Sn(f) is corresponding 
to |F{p(t)}|2. 

For the CR system, the wideband spectrum sensing problem 
is that the parameters characterizing the wideband spectral 
environment, i.e. N, fn and 2

nα , have to be estimated. 

B. Wavelet-Based Sensing Signals 
The wavelet-based spectrum sensing has detailed in [7] and 

be introduced in brief. Let ( )fφ  be a wavelet smoothing 
function. The extension of ( )fφ  by a scale factor s, which is 
the powers of 2, is given by 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

s
f

s
fs φφ 1                                    (4) 

Then, the continuous wavelet transform (CWT) of Sr(f) can be 
represented as 

( ) ( ) ( )ffSfSW srrs φ∗=                           (5) 

where * is convolution computation. Then, the inverse Fourier 
Transform of the wavelet function can be represented as 

 
Fig. 1 The PSD structure of a wideband signal with N bands  
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The inverse Fourier Transform of WsSr(f), WsSr(τ), can be 
represented as 

( ) ( ){ }
( ) ( ){ }

( ) ( )ττ
φ

τ

sR
ffSF

fSWFSW

r

sr

rsrs

Φ⋅=
∗=

=
−

−

1

1

                      (7) 

Then, (5) can be rewritten as 

( ) ( ){ }
( ) ( ){ }ττ
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sRF

SWFfSW

r
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Φ⋅=
=

                     (8) 

A product operation in (8) is more efficient than a 
convolution computation operation in (5). When the PSD Sr(f) 
smoothed by the scaled wavelet ( )fsφ , WsSr(f), is derived 
from (8), the first-order derivative scheme of WsSr(f) can be 
represented as 
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                         (9) 

The local maximum of the first derivative scheme is utilized 
to identify the boundaries fn [9]. The local maxima of ( )fSW rs′  
can be represented as 

( )
⎭
⎬⎫

⎩
⎨⎧

′= fSWf rs
f

n maxˆ ,    ( )Nfff ,0∈           (10) 
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C. PSD Estimation and Identification 

After nf̂  has been detected and estimated by (10), αn
2 has to be 

estimated. The average PSD within the band Bn can be 
computed and represented as 

( )∫
−−−

=
n

n

f

f
r

nn
n dffS

ff

ˆ

ˆ
1 1ˆˆ

1β̂                       (11) 

When it is assumed that the AWGN PSD Sw(f) can be 
measured, it is foreseen that nβ̂  is related to the unknown 2ˆnα  

by nβ̂ ≈ 2ˆnα +N0/2 and min,
ˆ
nβ =N0/2 is minimum for all nβ̂ . 

Therefore, a simple estimator for 2ˆnα  can be represented as 

nnnn ββα ˆminˆˆ 2
′

−= .                               (12) 

The simple estimator in (12) is enough to solve the sensing 
problem in this work. The major sensing problem in this work 
is to identify the frequency boundary fn and detect the occupied 
and non-occupied bands. According to [3], the PSD level, 2ˆnα , 
may be categorized into three spaces, i.e. white, gray, and 
black. Therefore, a simple estimator for 2ˆnα  is enough to detect 
[3, 9]. 

III. WAVELET-BASED SPECTRUM SENSING USING HILBERT 
TRANSFORM 

In recent years, the Hilbert transform is more commonly 
utilized to analyze the harmonic function by using a 
convolution computation operation with the Cauchy kernel. 
The Hilbert transform is a linear operation which transforms a 
desired function f(x) into another function g(x) with the same 
domain. For example, a square wave function is transformed 
and shown in Fig. 2. When the desired function Sr(f) is 
determined, the transformed function, the Hilbert transform of 
Sr(f), can be represented as  

( ) ( ) ( )fSfHfHS rr ∗=                          (13) 

where H(f)=p.v.1/πf. p.v. is the Cauchy principal value. When 
the continuous wavelet transform (CWT) of Sr(f) is first used, 
WsSr(f) can be obtained. Then, the Hilbert transform of WsSr(f) 
can be represented as 

( ) ( ) ( )fSWfHfSHW rsrs ∗=                       (14) 

The inverse FT of HWsSr(f), HWsSr(τ), can be represented as 

( ) ( ) ( ) ( )ττττ sRhSHW srrs Φ⋅⋅=                    (15) 

where h(π)=F-1{H(f)}. Then, substituting (16) into (15) yields 

( ) ( ){ }
( ) ( ) ( ){ }τττ
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                (16) 

When the Hilbert transform is used, the computation of the 
HWsSr(f) involves either convolution computation and Fourier 
Transform operations as in (14) or product computation and 
Fourier Transform operations as in (16). Similar to (8), a 
product operation in (16) is easier to operate than a 
convolution computation operation in (14). Then, the local 
maximum of the proposed scheme is utilized to identify the 
boundaries fn [9]. The local maxima of HWsSr(f) can be 
represented as 

 
Fig. 1 Hilbert transform of a square wave function 

( ){ }fSHWf rs
f

n maxˆ =                        (17) 

After nf̂  has been detected and estimated by (17), (11) and 
(12) can be utilized to estimate αn

2.  

IV. PERFORMANCE EVALUATION 
This work considers an interesting spectrum between 50 

MHz and 200 MHz, i.e. f0=50 MHz and f6=200 MHz. Fig. 3 
shows that the PSD of the observed signal has 7 bands with the 
frequency boundaries fn at [50, 100, 125, 150, 165, 175, 200] 
MHz when Sw(f)=-20 dB. B1, B3, B5 and B7 are not occupied. 
As shown in Fig. 3, B2 is considered that B2-B1 is equal to Sw(f), 
and then B2, B4 and B6 have corresponding PSDs with 0 dB, 4 
dB and 10 dB, respectively. Figs.4 and 5 are simulated with 
different Sw(f) under s=1, and Figs. 6 and 7 are simulated with 
different Sw(f) under s=2. Fig. 4 shows the edge detection of 
the first-order derivative scheme and the proposed scheme at 
Sw(f)=-10 dB when s=1. As shown in Figs. 4 (a) and (b), all 
frequency boundaries, f1, f2, f3, f4, f5, and f6, are local maxima 
for both schemes, so both schemes can easily detect frequency 
boundaries. Fig. 5 shows the edge detection of the first-order 
derivative scheme and the proposed scheme at Sw(f)=0 dB 
when s=1. As shown in Fig. 5 (a) for the referred scheme, f1 
and f2 are difficult to identify. f3 can be easily detected, but f4 is 
difficult to detect. Because B6 has higher power than B2 and B4, 
f5 and f6 can be identified. As shown in Fig. 5 (b) for the 
proposed scheme, f3, f4, f5, and f6 are local maxima. Although 
B1 is interfered by AWGN noise, f1 and f2 can be identified. 
Fig. 6 shows the edge detection of the first-order derivative 
scheme and the proposed scheme at Sw(f)=-10 dB when s=2. 
As shown in Figs. 6 (a) and (b), all frequency boundaries are 
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local maxima for both schemes, and both schemes can also 
obtain frequency boundaries. Fig. 7 display the edge detection 
of the first-order derivative scheme and the proposed scheme at 
Sw(f)=0 dB when s=2. As shown in Fig. 7 (a) for the referred 
scheme, f1 and f2 are difficult to identify. f3 and f4 can be 
detected. B6 has higher power than B2 and B4, so f5 and f6 can 
be identified. As shown in Fig. 7 (b) for the proposed scheme, 
f3, f4, f5, and f6 are local maxima. Although B1 is interfered by 
AWGN noise, f1 and f2 can also be identified. After frequency 
boundaries are identified, a simple estimator (12) is used to 
determine the occupancy of the bands. First, B1, B2, B3, B5 and 
B7 are considered herein. B2 is occupied, and B1, B3, B5 and B7 
are not occupied. Sw(f) can be obtained from min,

ˆ
nβ , and 2

2α̂  
can be calculated by (12). Then, Fig. 8 demonstrates the 
receiver operating characteristic (ROC) curves of the referred 
scheme and the proposed scheme when S2(f)/Sw(f)=10dB. The 
ROC shows the relationship between the probability of 
detection Pd and the probability of false alarm Pfa, and an 
optimum threshold λ is selected for finding a good trade-off 
between Pd and Pfa [3, 5]. Fig. 8 depicts that the proposed 
scheme outperforms the referred scheme. Similarly, 2

4α̂  and 
2
6α̂  can be obtained from B4 and B6, respectively. When S4(f) 

or S6(f) is considered, the proposed scheme also outperforms 
the referred scheme, and Pfa of the proposed scheme is lower 
than that of the referred scheme. 

Simulation results depict that the referred scheme and the 
proposed scheme can obtain better performance under low 
Sw(f), and frequency boundaries for both schemes can be 
identified. However, the referred scheme can not identify the 
frequency boundaries under high Sw(f). When high Sw(f) is 
considered, the proposed scheme can identify the frequency 
boundaries. Then, a simple estimator is used to determine the 
occupancy of the bands, and simulation results demonstrate the 
proposed scheme outperforms the referred scheme. 

V. CONCLUSION 
For the CR system, the wideband spectrum sensing problem 

is that the parameters characterizing the wideband spectral 
environment have to be estimated. The first-order derivative 
scheme is usually used to detect the edge of the spectrum. This 
work proposes a novel spectrum sensing algorithm for cognitive 
radio. As shown in the simulation results, the proposed scheme 
can obtain better efficient estimation and identification of 
frequency boundaries than the referred scheme. The simulation 
results also demonstrates that the proposed scheme performs 
better Pd and lower Pfa than does the first-order derivative 
scheme. Furthermore, a good estimator will perform better than 
a simple estimator. Estimation and identification of frequency 
boundaries is focused in this paper. In the future, a good 
estimator will be used to enhance this work. 
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Fig. 3 The PSD of the observed signal  

  
(a)                                                        (b) 

Fig. 4 Edge detection of the referred and proposed schemes at Sw(f)=-
10 dB when s=1 
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 (a)                                                   (b) 

Fig. 5 Edge detection of the referred and proposed schemes at Sw(f)=0 
dB when s=1 

  
 (a)                                                   (b) 

 

Fig. 6 Edge detection of the referred and proposed schemes at Sw(f)=-
10 dB when s=2 

  
 (a)                                                   (b) 

Fig. 7 Edge detection of the referred and proposed schemes at Sw(f)=0 
dB when s=2 

 

Fig. 8 ROC curves of the referred scheme and the proposed scheme 

 

 


